
The Matrix: An Agent-Based Modeling Framework for Data Intensive Simulations
P. Bhattacharya1, S. Ekanayake3, C. J. Kuhlman1, C. Lebiere2, D. Morrison2, S. Swarup1, M. L. Wilson1, and M. G. Orr1

1Network Systems Science and Advanced Computing Division, Biocomplexity Institute and Initiative, University of Virginia
2Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon University

3Lawrence Berkeley National Laboratory

1. Overview

• The Matrix is an agent-based modeling (ABM) framework

• The Matrix is free and open source software
• github.com/NSSAC/socioneticus-matrix

• Can be used to model ‘hybrid’ time simulations
• A combination of discrete time and discrete event

• Specialized for ‘compute and data intensive’ simulations

• Successfully used to model 3M individual cognitive agents
• A three order of magnitude increase over previous studies

2. Capabilities of the Matrix

• Allows writing agents in popular programming languages
• Python, R, C, C++, Java, Lisp, …

• Supports use of GPU units, and popular neural network libraries
• TensorFlow, PyTorch, Keras, Lens, …

• Enables use of cognitive system libraries like ACT-R

• Supports running simulations on cloud platforms
• Amazon EC2, Google Compute Cloud, and Microsoft Azure

• Gracefully handles large (≈ hundreds of gigabytes) system state

3. Models Implemented with the Matrix

Name Model Type Prog. Lang.
Freq-Stat Frequentist statistical model Python
Soc-Th Social structure theory model Python
CM-ANN Artificial neural network model C++
CM-Bayes Bayesian cognitive theory model R
CM-ACTR ACT-R cognitive theory model Common Lisp

4. Formal Model of a Matrix Simulation

• System state: 𝑥(0) → 𝑥(1) → ⋯ → 𝑥(𝑛)
• Transition function: 𝑥(𝑡 + 1) = 𝑔𝑠𝑖𝑚(𝑥(𝑡))
• Compute updates and apply: 𝑔𝑠𝑖𝑚(𝑥(𝑡)) = 𝑔𝑟𝑒𝑑(𝑥(𝑡), 𝑔𝑎𝑐𝑡(𝑥(𝑡)))
• Compute updates for 𝑣𝑗: 𝑔𝑎𝑐𝑡(𝑥(𝑡)) = ⋃𝑣𝑗∈𝑉 𝑔𝑣𝑗

𝑎𝑐𝑡(𝑥(𝑡))

5. The Matrix Runtime System

RabbitMQ BrokerController Process

Agent
Process

Agent
Process

State Store
Process

State Store Object

Controller Process

Agent
Process

Agent
Process

State Store
Process

State Store Object

Controller Process

Agent
Process

Agent
Process

State Store
Process

State Store Object

6. States of a Controller Process

iteration < num_time_steps

Agent
Synchronization

Phase

Update
Computation

Phase

Data Sharing
Phase

Simulation End State Store
Flush Phase

Controller
Synchronization

Phase

Agents compute updates;
the controller begins to
share output and post to
the state store.

Agents perform
initializing steps before
the simulation begins.

Agent computations end
for current time step.
Controller continues to
share output and post to
the state store.

Controller continues to
post to the state store
as it waits for other
controllers to finish.

Controller finishes
posting to the state
store, and flushes the
stores to output
repositories.

When the last round of
event tuples is written,
the controllers cleanly
exit.

5. Simulating GitHub
Event Trace

User Repo Type Time

user3 repo0 PushEvent 2018-02-01T00:00:00Z

user1 repo1 CreateEvent 2018-02-01T00:01:22Z

user2 repo1 IssueEvent 2018-02-01T00:03:08Z

user1 repo1 DeleteEvent 2018-02-01T00:10:45Z

useri repoj IssueEvent 2018-02-28T11:57:39Z

userk repol PushEvent 2018-02-03T11:59:50Z

GitHub Environment

u2

u1
u0

u3

u4

u5

r0

r1

r1.1

r2

• Learning: Learn parameters from training event trace

• Simulation: Generate simulated event trace

6. An ACT-R Model of GitHub

• CM-ACTR used the ACT-R library and was
written in Common Lisp

• CM-ACTR used only declarative memory and
procedural modules

• Previously seen events stored in memory

• New event computed one element of the
event tuple at a time

• Chosen elements used as retrieval context for
next elements

P
ro

ce
du

ra
l

M
od

ul
e

(B
as

al
 G

an
gl

ia
)

Matching (Striatum)

Declarative Module
(Temporal/Hippocampus)

Visual Buffer
(Parietal Cortex)

Goal Buffer
(DLPFC)

Retrieval Buffer
(VLPFC)

Manual Buffer
(Motor Cortex)

Intentional Module
(aPFC)

Visual Module
(Occipital/other)

Manual Module
(Motor/Cerebellum)

Selection (Pallidum)

Execution (Thalamus)

7. Scaling up CM-ACTR

30 60 120 240 480 960
cpu cores

103

104

#
sim

ul
at

io
n

ru
nt

im
e

(se
co

nd
s)

population size
0.30M
1.20M

2.10M
3.00M

30 60 120 240 480 960
cpu cores

102

103

104

#
up

da
te

sg
en

er
at

ed
pe

rs
ec

on
d

population size
0.30M
1.20M

2.10M
3.00M

8. Conclusion

• The Matrix facilitates rapid prototyping of ‘compute and data
intensive’ agent models

• The Matrix allows flexibility in use of programming
languages and libraries

• Matrix simulations can run on commodity clusters and cloud
computing platforms

This work is partially supported by DARPA (Grant No. FA8650-18-C-7826) and DTRA (Grant No. HDTRA1-17-0118)

