The Matrix: An Agent-Based Modeling Framework for Data Intensive Simulations

P. Bhattacharya¹, S. Ekanayake³, C. J. Kuhlman¹, C. Lebiere², D. Morrison², S. Swarup¹, M. L. Wilson¹, and M. G. Orr¹

¹Network Systems Science and Advanced Computing Division, Biocomplexity Institute and Initiative, University of Virginia ²Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon University ³Lawrence Berkeley National Laboratory

1. Overview

- The Matrix is an agent-based modeling (ABM) framework • The Matrix is free and open source software
- •github.com/NSSAC/socioneticus-matrix
- Can be used to model 'hybrid' time simulations
 - A combination of discrete time and discrete event
- Specialized for 'compute and data intensive' simulations • Successfully used to model 3M individual cognitive agents

2. Capabilities of the Matrix

- Allows writing agents in popular programming languages • Python, R, C, C++, Java, Lisp, ...
- Supports use of GPU units, and popular neural network libraries • TensorFlow, PyTorch, Keras, Lens, ...
- Enables use of cognitive system libraries like ACT-R
- Supports running simulations on cloud platforms • Amazon EC2, Google Compute Cloud, and Microsoft Azure

• A three order of magnitude increase over previous studies

3. Models Implemented with the Matrix

Name	Model Type	Prog. Lang.
Freq-Stat	Frequentist statistical model	Python
Soc-Th	Social structure theory model	Python
CM-ANN	Artificial neural network model	C++
CM-Bayes	Bayesian cognitive theory model	R
CM-ACTR	ACT-R cognitive theory model	Common Lisp

• Gracefully handles large (\approx hundreds of gigabytes) system state

4. Formal Model of a Matrix Simulation

- System state: $x(0) \rightarrow x(1) \rightarrow \cdots \rightarrow x(n)$
- Transition function: $x(t + 1) = g_{sim}(x(t))$
- Compute updates and apply: $g_{sim}(x(t)) = g_{red}(x(t), g_{act}(x(t)))$ • Compute updates for $v_j: g_{act}(x(t)) = \bigcup_{v_i \in V} g_{act}^{v_j}(x(t))$

5. The Matrix Runtime System

6. States of a Controller Process

5. Simulating GitHub

Event Trace					
User	Repo	Туре	Time		
user ₃	repo ₀	PushEvent	2018-02-01T00:00:00Z		
user ₁	repo ₁	CreateEvent	2018-02-01T00:01:22Z		
user ₂	repo ₁	IssueEvent	2018-02-01T00:03:08Z		
user ₁	repo ₁	DeleteEvent	2018-02-01T00:10:45Z		
	I				
user _i	repo _j	IssueEvent	2018-02-28T11:57:39Z		
user _k	repo _l	PushEvent	2018-02-03T11:59:50Z		

6. An ACT-R Model of GitHub

- CM-ACTR used the ACT-R library and was written in Common Lisp
- CM-ACTR used only declarative memory and procedural modules
- Previously seen events stored in memory
- New event computed one element of the event tuple at a time

- Learning: Learn parameters from training event trace
- Simulation: Generate simulated event trace

7. Scaling up CM-ACTR

• Chosen elements used as retrieval context for next elements

Visual Module (Occipital/other)

Manual Module (Motor/Cerebellum)

8. Conclusion

- The Matrix facilitates rapid prototyping of 'compute and data intensive' agent models
- •The Matrix allows flexibility in use of programming languages and libraries
- Matrix simulations can run on commodity clusters and cloud computing platforms