
An Analytical Framework for Measuring Network
Security using Exploit Dependency Graph

Parantapa Bhattacharya
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Email: parantapa@cse.iitkgp.ernet.in

Soumya. K. Ghosh
School of Information Technology

Indian Institute of Technology, Kharagpur
Email: skg@iitkgp.ac.in

Abstract—Attack graph is a popular tool for modeling
multi-staged, correlated attacks on computer networks. At-
tack graphs have been widely used for measuring network
security risks. A major portion of these works, have used
host based or state based attack graphs. These attack
graph models are either too restrictive or too resource
consuming. Also, a significant portion of these works have
used ‘probability of successfully exploiting a network’ as
the metric. This approach requires that the ‘probability of
successfully exploiting individual vulnerabilities’ be known
a priori. Finding such probabilities is inherently difficult.

This work uses exploit dependency graph, which is
a space efficient and expressive attack graph model. It
also associates an additive cost with executing individual
exploits, and defines a security metric in terms of the ‘min-
imum cost required to successfully exploit the network’.
The problem of calculating the said metric is proved to be
NP-Complete. A modified depth first branch and bound
algorithm has been described for calculating it. This work
also formulates, a linear time computable, security metric
in terms of the ‘expected cost required to successfully
exploit the network’ assuming a random attacker model
and an uncorrelated attack graph.

Index Terms—Network Security, Attack Graph, Exploit
Dependency Graph, Risk Quantification

I. INTRODUCTION

Attack graph is a tool for modeling multi-staged,
correlated attacks on computer networks. Attack graphs
have great potential use in detecting hidden multi staged
attack paths, as well as gaining deeper understanding of
security risks. A number of works [1]–[8], have been
published in recent times for measuring and analyzing
network security using attack graphs.

Attack graph models can be broadly classified into
three categories: host based attack graphs [9]–[13], state
based attack graphs [11]–[14], and exploit dependency
graphs [1]–[3], [15]. Much of the works on security
metrics have been done using host based and state based

attack graphs [9]–[14], [16], [17]. Works on security met-
rics using exploit dependency graphs have been mostly
limited to using ‘probability of successfully exploiting
the network’ as the security metric [1]–[3], [15].

Host based and state based attack graphs suffer some
basic limitations. Host based attack graphs can only
model exploits which give the attacker access to a new
host from an old host. Many exploits are executed in
stages, and may share these stages with other potential
exploits. Such stages cannot be effectively represented
using host based attack graphs. Moreover, many families
of exploits, such as local privilege escalation, man in the
middle attacks, etc. cannot be efficiently represented with
host based attack graphs.

State based attack graphs represent the full state of
the network within every vertex of the graph. Thus
they suffer from an exponential space complexity. If a
network’s state can be encoded by n boolean security
conditions, then the corresponding state based attack
graph has 2n vertices.

Security metrics which use ‘probability of success-
fully exploiting the network’ suffer from an inherent
problem. This approach requires that the ‘probability
of successfully exploiting individual exploits’ be known
a priori. These probabilities are nearly impossible to
obtain, as the result depends on numerous factors that
are practically impossible to enumerate or evaluate. This
has led authors in [2] to use the popular vulnerability
metrics Common Vulnerability Scoring System or CVSS
[18], [19] to generate values between zero and one, in
lieu of the actual probability.

This work tries to develop an analytical framework of
a security metric, which is devoid of the problems as
discussed above. The major contributions of this work
are as follows:
• Extending the concept of ‘exploit dependency

graphs’ to ‘regular attack graphs’, which have addi-

tional constraints enforcing ‘monotonicity’ and re-
moving possible irregularities allowed by the basic
definition.

• Formulation of a theoretical framework for measur-
ing network security using exploit cost measures
which are additive in nature.

• Proof of NP-Completeness for the problem of find-
ing the ‘minimum cost to exploit the network’.

• Development of a complete and optimal depth
first, branch and bound algorithm, using polynomial
space, to find an exploit sequence with minimum
cost.

• Development of a linear time algorithm to estimate
the ‘expected cost to exploit the network’, required
by a random attacker on an uncorrelated attack
graph.

The rest of the paper is organized in four sections.
Section II formally defines attack graphs and introduces
the notion of ‘regular attack graphs’. Section III defines
the problem of calculating the ‘minimum cost to exploit
a network’ and proves it to be NP-Complete. The section
also presents a depth first branch and bound based
algorithm for finding a ‘minimum cost exploit sequence’
required to exploit the network. Section IV presents
a linear time algorithm to estimate the ‘expected cost
to exploit the network’ by a random attacker on an
uncorrelated attack graph. Section V concludes the paper
with future direction of work.

II. ATTACK GRAPH

An attack graph is a representation of a network
and the exploits that can be executed on its elements.
This work uses exploit dependency model of attack
graphs [1]–[3], [15]. In this model, the network’s state
is encoded in form of boolean security conditions. The
vertices in the graph are of two types, representing the
security conditions and the exploits that connect them
[1]–[3], [15], [20], [21]. Every exploit requires a certain
set of security conditions to be true. On execution of the
exploit another disjoint set of security conditions become
true. From an attacker’s standpoint, security conditions
represent privileges that are already acquired or can be
later gained by executing the exploits.

The term exploit is used quite loosely in this context.
Attacking a network may, and in most cases does, make
use of systems and services in regular intended ways,
such as accessing a remote system. For the purpose of
attack graph terminology, this work uses the term exploit
to mean any atomic action performed by the attacker.

A. Definition

Definition 1. Given a finite set of exploits E, a finite
set of conditions C, a requires relation R ⊆ C ×E, and
an implies relation I ⊆ E × C, the attack graph A is
defined as G(E ∪ C,R ∪ I) [21].

Thus, attack graph is a directed bipartite graph. The
condition c is a pre-condition or post-condition of the
exploit e if (c, e) ∈ R or (e, c) ∈ I respectively.

For an exploit e, the set of pre-conditions and post-
conditions of the exploit are denoted by Pre(e) and
Post(e) respectively. Similarly, for a condition c, the
set of exploits for which it is a pre-condition and post-
condition are denoted by Req(c) and Imp(c) respec-
tively.

Pre(e) = {c | (c, e) ∈ R}
Post(e) = {c | (e, c) ∈ I}
Req(c) = {e | (c, e) ∈ R}
Imp(c) = {e | (e, c) ∈ I}

In an attack graph, the traditional notions of walks
and paths do not apply. The concept of executing an
exploit and satisfaction of a condition are used instead.
An exploit is said to be executable if and only if all of
its pre-conditions are satisfied. Execution of an exploit
is an event which marks the escalation of an attacker’s
privilege in the network. If an exploit is executed then
all of its post-conditions are satisfied.

B. Regular Attack Graph

Many works on attack graph [15], [20]–[22] have
used the requirement of monotonicity. Monotonicity, in
attack graph terminology, simply means that, an exploit
can only depend on security conditions being true. In
other words, this means execution of an exploit must
not require the absence of any privilege or, an attacker
never loses any privilege gained in course of his attacks
to execute further exploits. Monotonicity assumption
makes the problem of calculating reachability of security
conditions much simpler. However this also means that
certain exploits, such as denial of service, cannot be
easily modeled by an attack graph using monotonicity.

Alone, the definition of attack graph presented above
leaves room for a lot of irregularities. By irregularity
one means, notions that are counter intuitive to the idea
of attacking a network and the concept of monotonic-
ity. Here the notion of regular attack graph has been
formalized using the concepts of monotonicity.

∀e ∈ E(Pre(e) 6= ∅ and Post(e) 6= ∅) (1)

∀c ∈ C(Req(c) 6= ∅ or Imp(c) 6= ∅) (2)

∀c ∈ C(@e ∈ E | c ∈ Pre(e) and c ∈ Post(e)) (3)

Eqn. 1 ensures that every exploit has at least one pre-
condition and one post-condition. As without any pre-
condition the executable status of an exploit becomes
ambiguous. The definition does not state the executable
status of exploits without pre-conditions. The require-
ment of at least one post-condition ensures that the attack
graph does not contain exploits which do not provide any
privileges to the attacker. These are also the only relevant
exploits from the point of view of system administrators
and attackers.

Eqn. 2 asserts that for every condition there exists
at least one exploit for which it is pre-condition or a
post-condition. A security condition not related to any
exploit does not have any significance from the point of
execution of exploits. They can never be reached (unless
they are also starting conditions as described later) and
do not help in execution of exploits. Their redundant
presence is irrelevant for purpose of security analysis.

Eqn. 3 makes sure that a condition can not simulta-
neously be both pre-condition and post-condition of the
same exploit. An exploit cannot simultaneously require
and then provide the same security condition. This situ-
ation violates this intuitive notion of gaining privileges
by executing exploits. Since an already present privilege
cannot again be gained.

This work only uses regular attack graphs. For the
rest of the paper, attack graph is used to mean regular
attack graphs.

C. Exploit Sequence

Associated with an attack graph and an attacker model,
is a set of starting conditions S ⊆ C. All conditions in
the set of starting conditions are always satisfied. The
attacker starts with this initial set of conditions. Using
these, the attacker tries to attain the goal conditions G ⊆
C. The two major points of analysis of attack graphs
involve determining whether these goal conditions are
attainable and, if so, what is the cost of doing it.

The same attack graph may have associated with it
different starting and goal conditions. An attack graph
represents the network’s security conditions independent
of any attacker. Starting and goal conditions add the
attacker’s perspective to the attack graph. Whatever be
the capabilities and goal of an attacker, the attack graph
of the network remains fixed.

c0

c1

e0

e1

e2

c2

c3

c4

e3 c5

Fig. 1. Example attack graph with six security conditions and four
exploits

An exploit sequence p with respect to its starting
conditions S and goal conditions G is a sequence of
exploits 〈e1, e2, . . . , en〉 with the following conditions:

Pre(e1) ⊆ S

Pre(ei) ⊆

i−1⋃
j=1

Post(ej)

 ∪ S for i = 2, 3, . . . , n

G ⊆

(
n⋃
i=1

Post(ei)

)
∪ S

Fig. 1 shows an example attack graph with six security
conditions and four exploits. In this example, an attacker
begins with the starting conditions c0, c1, c4 and tries to
acquire the goal condition c5. The attacker can execute
exploits e0, e2 or e1 to gain the post-conditions c2, c3.
The pre-conditions of exploit e3 are c2, c3, c4 which the
attacker has now gained and can thus move to execute e3.
On executing e3 the attacker achieves the goal condition
c5. In this example, the attacker can use the exploit
sequence 〈e0, e2, e3〉 or 〈e1, e3〉.

D. Cost of Executing an Exploit

For the purpose of network security quantification, it
is essential to associate a notion of cost or difficulty
to the act of executing an exploit. For an attacker,
executing an exploit requires knowledge, time, access to
specialized resources such as password crackers, sniffers,
other software, and hardware tools. Depending on the
type of the exploit, it may contain some probabilistic
runtime components. The exploits may require some
interaction from the user. It may also depend on some
race conditions in the vulnerable application’s execution
logic. Many exploits are totally deterministic.

Works on security metrics using exploit dependency
graphs [1]–[3], [15] have been mostly limited to using

‘probability of successfully executing an exploit’ as the
cost function. The true probabilities for such events
are nearly impossible to obtain, as the result depends
on numerous factors that are practically impossible to
enumerate or evaluate. The work in [2] uses the popular
vulnerability metric, CVSS [18], [19] to generate values
between zero and one, in lieu of the actual probability.

It must be noted that the indeterminacy in determining
the ‘cost of executing an exploit’ comes mostly from
lack of accurate information about the exploits and the
attackers, and not from randomness of the outcome of an
attack. Thus, the cost of executing an exploit can thus
be much better represented using the phrase ‘difficulty
of executing the exploit’ rather than the ‘probability of
succeeding in an attempt’. This representation makes the
indeterminacy explicit.

The design of a proper cost function is in itself a major
research work. The focus of this paper is to develop
a theoretical framework for security evaluation, rather
than actual development of practical tools, which we
consider the immediate future work. Thus we refrain
ourselves from describing a concrete cost function in this
work. However we introduce the basic ideas necessary
for developing such a cost function by making judicious
use of CVSS.

CVSS is a system for associating a score to a discov-
ered and publicly disclosed vulnerabilities. The CVSS
scoring system consists of three parts viz. base, temporal,
and environmental.

The CVSS base metric consists of six components
viz. access vector, access complexity, authentication
scores, and the impact scores confidentiality, integrity
and, availability. Access vector describes the type of
access required to execute the vulnerability, such as,
local access, access within a subnet, and remote access.
Authentication describes the number of times the ex-
ploit has to authenticate itself to the vulnerable system.
Access vector and authentication are two aspects of
the CVSS scoring system that are already incorporated
in the attack graph model by means of exploits and
their pre-conditions. The impact scores of CVSS tries
to describe the result of an exploit in isolation and
associates a score with it. The impact scores essentially
describe post-conditions of exploits in an attack graph.
To summarize, five of the six components of CVSS base
metric describes features that an attack graph already
models. Thus it does not provide any information from
the perspective of ’cost or difficulty of exploit execution’.

Access complexity is the only metric that truly tries
to describe notion of cost or difficulty of executing an

exploit. It must also be noted that it does so using fuzzy
terms easy, medium, and hard.

The temporal metric group focuses on characteristics
of a vulnerability that can change over time. The environ-
mental metric group is used to modify the CVSS metric
on the basis of requirement of the organization using
it. One can map the temporal metric group component’s
exploitability and report confidence to the concept diffi-
culty of executing an exploit. The temporal metric com-
ponent remediation level and the environmental metric
group as a whole doesn’t map to the notion of attacking
and the notion of difficulty of executing an exploit.

From the above discussion that very few of the com-
ponents of CVSS are actually relevant for developing a
‘cost of exploitation’ score, and thus suitable for using
with attack graphs. Moreover the scores thus developed
are more appropriately expressed as fuzzy values that
can be then defuzzyfied to obtain appropriate crisp scores
usable as a cost function with attack graphs.

III. MINIMUM COST EXPLOIT SEQUENCE

The main motivation of performing any form of
network security analysis, is to determine how secure
a network is. In this work we restate the problem as,
to find the ‘minimum cost of successfully exploiting
the network’. Successfully attacking the network means
acquiring a defined set of goal privileges or conditions
from a given set of starting privileges or conditions.

To analyze the cost of exploiting a network, one
associates a cost parameter to every exploit w : E → R+

that can be used in the network. The cost function is
additive in nature. Given a cost function w the cost of
an exploit sequence p = 〈e1, e2, . . . , en〉 is defined as:

w(p) =

n∑
i=1

w(ei)

Let P be the set of all exploit sequences with respect
to the starting conditions S and goal conditions G. The
minimum cost for reaching the goal conditions G from
the starting conditions S is defined as:

ρ =

{
minw(p) ∀p ∈ P if P 6= ∅
∞ otherwise

A minimum cost exploit sequence pm is defined to be
an exploit sequence such that w(pm) = ρ.

Lemma 1. The problem of finding a minimum cost
exploit sequence pm given an attack graph A, a set of
starting conditions S, a set of goal conditions G, and a
weight function w is NP-Complete.

To prove the above statement, we first state the deci-
sion version of the problem. Given an attack graph A, a
set of starting condition S, a set of goal conditions G, a
weight function w, and a cost limit x, the problem is to
decide the existence of an exploit sequence p such that
w(p) is less than a given cost x.

Proof: The problem is in NP. The above problem is
clearly in NP. The exploit sequence itself is a certificate
for the solution. The problem of validating the exploit
sequence and calculating its total cost can be performed
in polynomial time. Algorithm 1 verifies an exploit
sequence in polynomial time.

Algorithm 1 Verify an exploit sequence
1: function VERIFY-EXP-SEQ(A,S,G,w, x, 〈ei〉)
2: Q← S
3: cost← 0
4: for all e ∈ 〈ei〉 do
5: if Pre(A, e) ⊆ Q then
6: Q← Q ∪ Post(A, e)
7: cost← cost+ w[e]
8: else
9: return FALSE

10: if G ⊆ Q and cost ≤ x then
11: return TRUE

12: else
13: return FALSE

Algorithm 1 takes as input an attack graph A in form
a pre-condition, post-condition list. For every exploit e
in the attack graph, two lists are maintained, one for its
pre-conditions, and one for its post-conditions. The set of
starting conditions S and the set of goal conditions G are
also maintained as lists. Cost of the individual exploits
w is taken as input in form of an array of floating point
numbers. The exploit sequence 〈ei〉 is also taken in form
of a list.

The algorithm internally maintains a set of currently
achieved goal conditions Q which is implemented as a
hash table. cost, the cost measure, keeps track of the
cost incurred by the already executed exploits.

The algorithm takes one exploit at a time from the
exploit sequence 〈ei〉, checks whether the exploit’s pre-
conditions are satisfied by the currently available set of
conditions Q, adds its cost to cost, and finally adds
its post-conditions to the set Q. At the end of the
exploit sequence, the algorithm checks whether all the
requirements of the goal conditions are met and the cost
of the exploits are within the bound x.

cs

e0 e1 e2 e3 e4

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

Fig. 2. Reduction of the set cover problem using minimum cost
exploit sequence problem

Initialization of Q and cost takes O(|S|) and O(1)
time respectively. The total time spent in checking the
condition at line 5 and the union operation in line 6 are
O(|R|) and O(|I|) respectively. Here R and I are the
requires and implies relation set of the attack graph A.
The total time spent in the assignment operation on line 7
is O(|〈ei〉|). The condition on line 10 can be checked in
O(|G|) time. The whole algorithm runs in linear time in
the size of the input.

Proof: The problem is NP-Hard. To prove the problem
is NP-Hard one can reduce the set cover problem with
it. The set cover problem is NP-Complete [23].

Given a finite family F of subsets of S =
〈ε1, ε2, . . . , εn〉, and a positive integer k, the set cover
problem is to decide the existence of a subfamily C ⊆ F
of size less than or equal to k which is a cover of S.

To solve the set cover problem one can use the follow-
ing reduction. For every element εi ∈ S a condition ci
is created. For each set Sj ∈ F an exploit ej is created.
The condition ci ∈ Post(ej) if and only if εi ∈ Sj .
Additionally, we create one more condition vertex cs.
Pre(ej) = {cs} for all ej . The starting condition set is
defined as S = {cs} and the goal condition set is defined
as G = {cj}. The cost function w(e) = 1 for all e and
x = k.

If C be a set cover with less than k sets and {en}
be the set of exploits in the generated attack graph
corresponding to the set cover C, then any sequence of
exploits in {en} is a valid exploit sequence with cost less
than x. Conversely if 〈en〉 be a valid exploit sequence
for the generated attack graph with cost less than x, then
C is a valid set cover of the original problem with size
less than k where C contains the subsets corresponding
to exploits in the exploit sequence 〈e1, e2, . . . , en〉.

To understand the reduction with an example, let S =
{ε0, ε1, . . . , ε9} be a set with ten members. Let the family

of subsets F = {Si} be as follows:

S0 = {ε0, ε2, ε3},
S1 = {ε0, ε1, ε2, ε4, ε5},
S2 = {ε3, ε4, ε5, ε6},
S3 = {ε3, ε4, ε6, ε8, ε9},
S4 = {ε5, ε6, ε7, ε9}

Fig. 2 shows the corresponding attack graph. In the
above problem 〈e0, e1, e3, e4〉 is a valid exploit sequence
of cost four. Executing these four exploits the attacker
has access to all the goal conditions. Correspondingly,
a cover of the original set cover problem is given by
C = {S0, S1, S3, S4} which is of size four.

Algorithm 2 Finding a minimum cost exploit sequence
1: function FIND-EXP-SEQ(A,S,G,w)
2: PUSH(Q, NIL)
3: cost′ ←∞
4: seq′ ← NIL

5: while Q 6= ∅ do
6: seq ← POP(Q)
7: conds← S
8: cost← 0
9: for all e ∈ seq do

10: conds← conds ∪ Post(A, e)
11: cost← cost+ w[e]

12: if G ⊆ conds then
13: if cost < cost′ then
14: cost′ ← cost
15: seq′ ← seq

16: else
17: exps← ∅
18: for all e ∈ E − seq do
19: if Pre(A, e) ⊆ conds then
20: if |Post(A, e)− conds| > 0 then
21: exps← exps ∪ e
22: for all e ∈ exps do
23: if cost+ w[e] < cost′ then
24: PUSH(Q, seq + e)

25: return seq′

For the rest of this section we describe Algorithm 2
which can be used to find a minimum cost exploit
sequence.

Algorithm 2 takes as input an attack graph A in form
of pre-condition and post-condition lists. The start and
goal conditions S and G are also taken as lists. The cost

function for individual exploits w is taken in the form
of an array of floating point numbers.

The algorithm internally uses a stack Q. The stack is
used to store exploit sequences. The exploit sequences
themselves are maintained as lists. Q is initialized by
pushing an empty sequence into it. seq′ stores the
currently known best exploit sequence. seq′ is initialized
to NIL. Also maintained is the cost of best known exploit
sequence cost′. cost′ is initialized to ∞

Algorithm 2 is essentially a depth first branch and
bound search algorithm to search for the minimum cost
exploit sequence. The algorithm stores partial exploit
sequences in the stack Q. In each iteration of the
algorithm (line 5), an exploit sequence seq is popped
from the stack.

The algorithm checks if seq reaches the goal condi-
tions (line 12). If so its cost is checked with that of the
currently best known sequence seq′. If its cost is less
that of the currently best known sequence, the new cost
is stored in cost′ and the sequence itself is saved in seq′.

If the popped sequence is not sufficient to reach the
goal, all the exploits which can be executed after execut-
ing the popped sequence, exps is generated (lines 17–
21). This list excludes any exploits that do not have
any new post-conditions left to be obtained. For each
such exploit e ∈ exps, a new sequence is generated by
appending e to seq. If the cost of the newly generated
sequence greater than cost′, then the generated sequence
is ignored. Otherwise it is pushed on to the stack Q
(line 24).

To understand the memory requirement of Algo-
rithm 2 it must first be realized that the size of an
exploit sequence is O(|C| log |E|). Here C and E are the
condition and exploit set for the attack graph A. There
can be no more than |C| exploits in any exploit sequence
since every exploit contributes at least one privilege to
the attacker. Also each exploit can be uniquely identified
using log |E| bits. The depth of the created search tree
can also not be more than |C|. The maximum branching
factor is the maximum possible number of exploits
available at any level or |E|. Thus the worst case space
requirement of the algorithm is O(|C|2|E| log |E|). For
this analysis we can safely ignore other space require-
ments of the algorithm as the space requirement of the
stack Q dominates.

Algorithm 2 is complete and optimal. It always finds
an exploit sequence if there exists one. Also, it finds the
minimum cost exploit sequence. However in the worst
case it checks through all possible exploit sequences
which can be factorial in input size. A depth first

approach is suitable for this problem as the generated
tree has a limited depth which is linear in the input size.

IV. NETWORK RESILIENCE AGAINST A RANDOM

ATTACKER

Finding the exact cost of the minimum cost exploit
sequence has been proved to be NP-Complete. There
is not much scope of finding an efficient algorithm
absent of any domain specific information. This section
takes a totally different approach towards the problem.
Instead of looking for the ‘minimum cost’ that would be
required by the most skilled attacker, we try to find the
‘expected cost’ that would be incurred by a very naive
but extremely resourceful attacker. Here we present a
linear time algorithm that tries to calculate the ‘expected
cost’ of exploiting the network for a random attacker
when presented with network with an uncorrelated at-
tack graph. It must be noted that the approach presented
in this section is especially suitable for large networks,
which may have extremely huge attack graphs.

The assumptions made for this section are as follows:

• The goal conditions are reachable when starting
with the starting conditions.

• Given a possible set of exploits to execute from, the
attacker chooses one at random.

• The attacker never re-executes exploits. However he
doesn’t know a priori all the post conditions of the
exploit. Hence he does not discard exploits whose,
post conditions are already achieved.

• The attack graph is uncorrelated. This means that
for any exploit, every security condition, other than
its pre-conditions, are equally likely to be its post-
condition.

Let, c = |C| be the total number of conditions and
e = |E| be the total number of exploits in the attack
graph. Also, σ and ρ be the average number of conditions
required and implied by exploits respectively in the
attack graph.

Let, after executing exploit number i, the attacker
has obtained ci conditions. Exploit number i + 1 will
serve the attacker with ρ post-conditions. Since the attack
graph is uncorrelated, the fraction of these that are new
is given by

(
c−ci
c−σ

)
.

Thus we have:

ci+1 = ci + ρ · c− ci
c− σ

= ci ·
(
1− ρ

c− σ
)

+
cρ

c− σ
(4)

Assuming c0 = s = |S| is the number of starting
conditions, we have

ci = (s− c) ·
(
1− ρ

c− σ
)i

+ c (5)

Let pi be the probability that g = |G| goal conditions
are met after executing i exploits. Since, ci is the number
of conditions obtained after executing i exploits, pi
can be calculated as the probability of having g goal
conditions in the set of ci conditions currently present.
Thus

pi =

(
c− g
ci − g

)
·
(
c

ci

)−1
=

(
ci
g

)
·
(
c

g

)−1
(6)

Hence, expected number of exploits required to reach
the goal conditions can thus be calculated as

υ =

e∑
i=0

i · pi (7)

Obviously, the above expression can be calculated in
linear time in the number of exploits.

Since we assume that the attacker ignores the cost of
executing the exploits, we can just present the expected
number of exploits as a security metric for the network.
However we can approximate the expected cost by the
product of the expected number of exploits and the
average cost per exploit w̄.

expected cost = υ · w̄ (8)

The approximate, expected cost obtained may be used
as the initial bound for the branch and bound algorithm
described in the previous section. However it must be
noted that this bound is neither a strict over or under
estimate of the minimum cost.

V. CONCLUSION

This work extends the notion of exploit dependency
graphs to define regular attack graphs using the concept
of monotonicity. A theoretical framework for develop-
ment of security metrics which uses cost of executing
individual exploit as basis has been proposed. The prob-
lem of finding the minimum cost for exploiting a network
has been proved to be NP-Complete. A polynomial
space depth first branch and bound based algorithm
for searching for an optimal exploit sequence using
polynomial memory has been described. A linear time
computable expected cost measure has been proposed
assuming random attacker model and uncorrelated attack
graph.

The algorithm proposed in this work for finding an
optimal exploit sequence has a factorial time requirement

in the worst case. The expected cost measure described
has been developed using assumptions of random at-
tacker model and uncorrelated attack graph. Real life
attackers obviously don’t follow the said model. In
future, a suitable approximation algorithm needs to be
developed with strict approximation guarantee. Further,
development of an acceptable cost measure is a major
challenge and an immediate future work.

REFERENCES

[1] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An
Attack Graph-Based Probabilistic Security Metric,” in Data and
Applications Security XXII, LNCS, V. Atluri, Ed. Springer
Berlin / Heidelberg, 2008, vol. 5094, pp. 283–296.

[2] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring
Network Security Using Dynamic Bayesian Network,” in 4th
ACM workshop on Quality of Protection, QoP ’08, 2008, pp.
23–30.

[3] S. Noel, L. Wang, A. Singhal, and S. Jajodia, “Measuring
Security Risk of Networks Using Attack Graphs,” International
Journal of Next-Generation Computing, vol. 1, no. 1, 2010.

[4] N. Ghosh and S. K. Ghosh, “A planner-based approach to gen-
erate and analyze minimal attack graph,” Applied Intelligence,
pp. 1–22, 2010.

[5] ——, “An Intelligent Approach for Security Management of an
Enterprise Network Using Planner,” in Intelligent Autonomous
Systems, D. Pratihar and L. Jain, Eds., 2010, vol. 275, pp. 187–
214.

[6] N. Ghosh, S. Nanda, and S. K. Ghosh, “An ACO Based
Approach for Detection of an Optimal Attack Path in a Dy-
namic Environment,” in Distributed Computing and Network-
ing, LNCS, K. Kant, S. Pemmaraju, K. Sivalingam, and J. Wu,
Eds., 2010, vol. 5935, pp. 509–520.

[7] N. Ghosh and S. K. Ghosh, “An Approach for Security Assess-
ment of Network Configurations Using Attack Graph,” Interna-
tional Conference on Networks & Communications, NetCom’
09, vol. 0, pp. 283–288, 2009.

[8] ——, “An Intelligent Technique for Generating Minimal Attack
Graph,” in Workshop on Intelligent Security SecArt ’09 in
19th International Conference on Automated Planning and
Scheduling, ICAPS ’09, 2009, pp. 42–51.

[9] X. Liu, C. Fang, D. Xiao, and H. Xu, “A Goal-Oriented
Approach for Modeling and Analyzing Attack Graph,” in Inter-
national Conference on Information Science and Applications,
ICISA ’10, 2010, pp. 1–8.

[10] P. Ammann, J. Pamula, R. Ritchey, and J. Street, “A Host-
Based Approach to Network Attack Chaining Analysis,” in 21st
Annual Computer Security Applications Conference, ACSAC
’05, 2005, pp. 72–84.

[11] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup, “A Weakest-
Adversary Security Metric for Network Configuration Security
Analysis,” in 2nd ACM workshop on Quality of Protection, QoP
’06, 2006, pp. 31–38.

[12] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated Generation and Analysis of Attack Graphs,” in
IEEE Symposium on Security and Privacy, 2002, pp. 273–284.

[13] O. Sheyner and J. Wing, “Tools for Generating and Ana-
lyzing Attack Graphs,” in Formal Methods for Components
and Objects, LNCS, F. de Boer, M. Bonsangue, S. Graf, and
W. de Roever, Eds. Springer Berlin / Heidelberg, 2004, vol.
3188, pp. 344–371.

[14] S. Jha, O. Sheyner, and J. Wing, “Two Formal Analyses of
Attack Graphs,” in 15th IEEE Computer Security Foundations
Workshop, 2002, pp. 49–63.

[15] L. Wang, A. Singhal, and S. Jajodia, “Measuring the Overall
Security of Network Configurations Using Attack Graphs,” in
Data and Applications Security XXI, LNCS, S. Barker and
G. Ahn, Eds. Springer Berlin / Heidelberg, 2007, vol. 4602,
pp. 98–112.

[16] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-
Attack Graph Generation Tool,” in DARPA Information Surviv-
ability Conference Exposition II, DISCEX ’01, vol. 2, 2001, pp.
307–321.

[17] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, Graph-
Based Network Vulnerability Analysis,” in 9th ACM conference
on Computer and Communications Security, CCS ’02, 2002, pp.
217–224.

[18] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerabil-
ity scoring system,” IEEE, Security Privacy, vol. 4, no. 6, pp.
85–89, 2006.

[19] ——, “A Complete Guide to the Common Vulnerability
Scoring System Version 2.0,” 2007. [Online]. Available:
http://www.first.org/cvss/cvss-guide.html

[20] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs, “Efficient
Minimum-Cost Network Hardening Via Exploit Dependency
Graphs,” in 19th Annual Computer Security Applications Con-
ference, 2003, pp. 86–95.

[21] L. Wang, S. Noel, and S. Jajodia, “Minimum-cost network
hardening using attack graphs,” Computer Communications,
vol. 29, no. 18, pp. 3812–3824, 2006.

[22] S. Noel and S. Jajodia, “Managing Attack Graph Complexity
Through Visual Hierarchical Aggregation,” in ACM workshop
on Visualization and Data Mining for Computer Security,
VizSEC/DMSEC ’04, 2004, pp. 109–118.

[23] R. Karp, “Reducibility Among Combinatorial Problems,”
in Complexity of Computer Computations, R. Miller and
J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

