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Social networks, forums, and social media have emerged as global platforms for forming and shaping opinions
on a broad spectrum of topics like politics, sports, and entertainment. Users (also called actors) often update
their evolving opinions, influenced through discussions with other users. Theoretical models and their anal-
ysis on understanding opinion dynamics in social networks abound in the literature. However, these models
are often based on concepts from statistical physics. Their goal is to establish specific phenomena like steady
state consensus or bifurcation. Analysis of transient effects is largely avoided. Moreover, many of these studies
assume that actors’ opinions are observed globally and synchronously, which is rarely realistic. In this article,
we initiate an investigation into a family of novel data-driven influence models that accurately learn and fit
realistic observations. We estimate and do not presume edge strengths from observed opinions at nodes. Our
influence models are linear but not necessarily positive or row stochastic in nature. As a consequence, unlike
the previous studies, they do not depend on system stability or convergence during the observation period.
Furthermore, our models take into account a wide variety of data collection scenarios. In particular, they
are robust to missing observations for several timesteps after an actor has changed its opinion. In addition,
we consider scenarios where opinion observations may be available only for aggregated clusters of nodes—a
practical restriction often imposed to ensure privacy. Finally, to provide a conceptually interpretable design of
edge influence, we offer a relatively frugal variant of our influence model, where the strength of influence be-
tween two connecting nodes depends on the node attributes (demography, personality, expertise, etc.). Such
an approach reduces the number of model parameters, reduces overfitting, and offers a tractable and expli-
cable sketch of edge influences in the context of opinion dynamics. With six real-life datasets crawled from
Twitter and Reddit, as well as three more datasets collected from in-house experiments (with 102 volunteers),
our proposed system gives a significant accuracy boost over four state-of-the-art baselines.
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1 INTRODUCTION

A colossal recent growth has been witnessed in the number of social media users, who use them
as digital pinboards to express their opinions through extensive discussions on breaking news,
political issues, sports events, celebrities, and new products, among others. Thus, these platforms
have come to play a crucial role in forming and shaping people’s opinion on a topic. In fact, vari-
ous agencies routinely use social media to tap people’s opinion on the issues of interest. Naturally,
modeling and estimating opinion dynamics over social networks has been studied widely by soci-
ologists and psychologists [6, 14, 15, 22, 30, 32, 41].

In this article, we initiate a thorough study of graph models for opinion dynamics, where a user,
modeled as a node in a social network, forms her opinion about a topic by observing the opinions
of her neighbors. In general, opinion can be polarized or categorical. In many situations, we can
capture only incomplete opinion readings at the nodes. Therefore, there is an increasing need to
model and estimate the polarity and intensity of influence that each node exercises on its neighbors
via edges, in these situations with incomplete observations.

1.1 Prior Work and Limitations

Research on opinion dynamics was initiated long ago, from the inception of online social net-
works, predominantly following models based on statistical physics [6, 14, 22, 30, 32, 41, 43, 60].
They were primarily designed to capture various specific phenomena in the context of opinion
exchange, such as consensus and polarization. However, the parameters of such models are rarely
data driven. Therefore, the weights or influences of neighbors are often set to be identical or arbi-
trary [14, 30, 41], without regard to the observed behavior. In addition, since these models bank on
some conditions catering to one or more specific scenarios, they often implicitly favor that opin-
ions converge and/or consensus or polarization is reached as a steady state [22, 30, 32]. However,
the most critical time to model social influence is arguably before steady state is attained—when
the system is still showing transient behavior. The feasibility and need for studying the transient
behavior has arisen from the large amount of user-generated content, such as tweets, which are
now available for analysis. Subsequently, market survey has become ubiquitous on social media.
For example, people’s ratings on leaders are collected almost every month through various polls
rather than just before elections; the sentiment of people on various issues can continuously be
assessed from the comments/tweets they post. These ratings or sentiments continuously fluctuate
over time and do not really settle to a fixed value. Hence, any current state of opinion observed
at some point in time is merely a transience, which quickly changes after some time. Therefore,
assumptions like convergence, consensus, or polarization are too restrictive and may not reflect
realistic situations. Models inherited from statistical physics perform quite poorly in a data-driven
scenario, as established by our experimental results (Section 8).

Modeling influence during transience is only one aspect where idealized models fall short of
reality. Another critical need is to model the ways in which opinion data can be practically cap-
tured to estimate influence models. The most desired way of such data acquisition is updating
the opinion of an individual as soon as it is expressed (push mode). Such a setting would capture
the most information for opinion dynamics. For corporations like Facebook or Twitter, a real-time
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and exact copy of the data is available, and therefore they can afford to update and maintain data
in push mode. However, in many cases where the exhaustive data collection is costly, it may be
practical to collect it only intermittently (pull mode). For example, opinion about political lead-
ers may be collected in monthly surveys; companies may estimate brand sentiments aggregated
to a granularity of weeks, for example. The number of actual value updates between polls may
vary widely across actors and time. For instance, people may update their opinions much more
frequently before and during an election. Another crucial example of sporadic data collection is
crawling from Twitter. Currently, Twitter allows only a 1% sample to be crawled free of cost—that,
too, within a weekly timeline. Therefore, any such collection must miss a large fraction of tweets.
Any model that assumes complete or perfect knowledge of opinion updates will be quite fragile in
practice. A major challenge we faced in this work was to develop influence models that are robust
in the face of sporadic and incomplete data updates.

1.2 Present Work

We initiate our investigation into the following type of influence models. We assume that agents
(nodes in a social graph) have quantitative opinions that are real continuous numbers, and these
agents influence each other through the edges. In some applications (e.g., polls involving ratings),
these numeric opinions are directly visible. In applications where users express themselves via
texts (e.g., Twitter, Zomato reviews), they can be converted into estimates of numeric opinion [66].
We further assume that influence is linear in nature—that is, the opinion of a user changes as a
linear function of the opinions of her neighbors. The weights of this linear function reflect the
corresponding influence of one user on another. Such an assumption makes the proposed models
tractable, explainable, and learnable. However, unlike the DeGroot’s consensus model [22], we do
not enforce a row-stochastic structure on the influence matrix or assume the existence of a steady
state consensus, polarization, or fragmentation.

In addition to the preceding modeling choice, which considers influences of individual edges
independently, we also consider a relatively frugal variant of our models (having fewer parameters)
where influence between two nodes mainly depends on their properties (in people, this might
be clubbed into “personalities”). From detailed experimentation, we notice that despite having
fewer parameters, such a model provides more accurate predictive performance than its per-edge
counterpart, which is a surprising observation to us.

Subsequently, we consider a wide variety of data observation regimes described in the follow-
ing, which requires us to devise significant modifications to the basic linear model. To that aim, we
design a family of opinion dynamical models and the corresponding parameter estimation meth-
ods, where the models are several variants of the basic unrestricted linear opinion propagation
system. Each of these variants works in a different data observation setting, and by doing so, the
proposed approach is able to flesh out the inchoate idea of a simple linear model into a complete
robust modeling suit, capable of operating over different aggressive realistic settings.

Observation Regimes. We assume four diverse data collection settings. In what follows, a “mes-
sage” or “post” is the (local) announcement of change in opinion value at a node, such as one
tweet:

—Full observation: Here, we assume that all posts made on the timeline of the users are
available.

—Periodic observation: Here, we assume that the data collector misses data in regular (equal)
intervals.

—Aperiodic observation: This is a more realistic situation where we assume that the posts are
collected intermittently at irregular (not equal) intervals.
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—Mesoscaled observation: As opposed to the preceding three scenarios where opinions are
collected for each individual, here we consider that opinions are aggregated over clusters
of nodes rather than polling individual nodes.

Experimental Validation. We report on a series of experiments with nine datasets to validate our
influence model and estimation algorithms. Three of these were collected by running controlled,
in-house, social opinion exchange processes. In these processes, we attempted to capture every
opinion change of all participants. They were told to form opinions based solely on discussions
with designated social network neighbors. These datasets helped us validate our model in a full

observation setting that is difficult to avail in practice. We collect six more datasets from Twitter
and Reddit. For each of these datasets, our proposed methods offer substantial accuracy gains in
predicting the opinion of users, beyond several strong baselines, for all data collection scenarios.
In addition, we observe that mesoscaling can provide better performance in forecasting collective
opinion of a group of users.

Summary of Contributions. We make the following contributions in this article:

—Models for learning transient opinion dynamics: We learn a linear opinion propagation dy-
namical model from observed opinion values of the individual user’s agents without ap-
pealing to steady state behavior. To the best of our knowledge, our framework (a) is the
first that makes no assumption about consensus, polarization, or fragmentation; (b) works
in a potentially transient setting and (c) regularizes edge parameter estimates using node
propertiesand (d) faithfully matches real-life network observations.

— In-house games for full observation data: In the real world, users are influenced by multi-
ple sources of information. Considering that it is practically impossible to collect all posts
from all different sources of information that influence users, we conducted three in-house
games with around 100 users who were connected in a specified network structure. They
expressed their views on three topics. The users directly provided their opinion along with
their messages for each post. This clean, full observation dataset helps make initial assess-
ments of models while avoiding the complications arising from missed observations.

—Practical data-acquisition settings: To make our proposal practically effective, we consider
several realistic data collection scenarios (e.g., periodic, aperiodic, or aggregated observa-
tions). Such scenarios present additional challenges to modeling and learning the transient
opinion dynamics. We present experiments on several real datasets with these character-
istics, based on Twitter and Reddit. We establish that our model offers significantly better
performance than other existing baselines.

A preliminary version of this work can be found in De et al. [16], which discusses only the basic
version of the models, excluding those of community-level opinions and node features, and with
fewer datasets and experimental analysis.

Organization. Section 2 provides a comprehensive review of the previous literature. The next
three sections provides the key technical expositions of this article. More specifically, Section 3
reports the two basic influence models for opinion dynamics—one considering independent edge
weights and another modeling the edge weight as a function of the corresponding node properties.
Section 4 describes the variants of the models in various data acquisition scenarios. In Section 5,
we describe algorithms to estimate model parameters for different variants of our model. Section 6
describes the collection of real and in-house datasets. Section 7 presents the evaluation metrics.
Section 8 illustrates the experimental setup and the results. Finally, in Section 9, we conclude our
article.
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2 RELATED WORK

Although they are often used interchangeably, Merriam-Webster defines an opinion as “a conclu-
sion thought out yet open to dispute” and a sentiment as “a settled opinion reflective of one’s
feelings” [51]. In this work, we use the term opinion in view of their dynamic nature.

Not all influence is propagated along social network edges; external events also impact agents.
However, Myers et al. [48] developed a detailed model for blending external and social influence,
finding that 71% of the information transfer volume (suitably characterized) in Twitter can be
attributed to information diffusion across social links. Here, we will focus exclusively on influence
conveyed by social links. Including different opinion models like discrete, continuous, and hybrid
opinion models, our opinion model is related to other application domains including influence
propagation, self-organizing processes in networks, and system theory. We describe them in detail,
beginning with the discrete opinion models, which are the earliest opinion models in literature.

2.1 Discrete Opinion–Based Approach

Discrete models assume that the opinions are discrete (binary or ordinal/quantized). The voter
model [14] belongs to this category. At each step, a node is selected at random; this node chooses
one of its neighbors uniformly at random (including itself) and adopts that opinion as its own.
This model always leads to consensus that is rare in many social scenarios. A modified version
of the voter model is called label propagation [69], where the node adopts the majority opinion
from among its neighbors. However, these models always converge to consensus, irrespective of
the transient dynamics.

One way to overcome such a limited outcome is to incorporate stubborn agents [68]. Another
way [6] is to have each agent adopt its neighbors’ opinion, but depending on the similarity with her
own. This model leads to polarization instead of consensus. This was entirely a data-driven study
with no rigorous analysis. A further unifying variation was analyzed by Lanchier [41]. In that
model, an agent adopts another agent’s opinion if those opinions are within a certain distance or
difference called the confidence threshold. Lanchier showed that small (large) threshold values lead
to polarization (consensus) with high probability. Kempe et al. [36] brought forward the concept
of influence selection, whereby an agent is not only influenced by other agents that have a similar
opinion but also selects for interaction agents who are similar to itself. They proved that such be-
havior can stabilize over arbitrary graphs and precisely characterize the set of all stable equilibria.

Discrete opinions are a natural model for some applications, but not others. For example, opinion
about the world population at a future date or the concentration of atmospheric carbon dioxide or
the number/fraction of votes a politician might get are all effectively continuous.

2.2 Continuous Opinion–Based Approach

Our present work is in the other regime of continuous opinions. Many models for continuous
opinion assume, like us, that neighbors influence linearly the opinion of an agent [22], reaching
limited consensus. Analysis is frequently grounded in the mathematics of matrix eigensystems,
physics, and theoretical biology. They are based, for example, on bird flocking models [30] and
cellular automata [32]. In the flocking model, a node i (agent) with opinion xi first selects the set
of neighbors j having opinions x j so that |xi − x j | ≤ ϵ , then updates its own opinion by averaging
them. A class of variants of flocking models takes into account the random interactions between
users [21, 67]. These models have shown that final distribution of opinion values across the net-
works strongly depend on the choice of the threshold. For example, high threshold values result
in opinion convergence around the initial average opinion, whereas low thresholds yield several
opinion clusters across the graphs. Moreover, these works have considered several variations of
flocking models. Yet they observed a similar clustering behavior for a large parameter space.
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There is also a large body of work (see Chazelle [12] and Lorenz [46] and references therein)
that has sought to characterize the convergence of bounded confidence dynamics to either absolute
consensus or some clustering (polarization). But not all works focus on convergence. Bindel et al.
[10] state that in many social settings, consensus may never be attained. They characterize the
cost of disagreements in a game-theoretic setting. Of course, there are other occasions where only
a discrete opinion model will fit, and network averaging in the continuous sense is not meaningful
[13]. Agents must choose from a fixed discrete set of options. Various formulations of graphical
games have shown that characterizing stability even for a two-strategy game is very difficult.

We chose to address continuous opinions to retain some theoretical handle in the face of our
newly introduced complications, such as possible transience and intermittent observations. How-
ever, there are some important distinctions with earlier work that may appear similar. DeGroot
[22] assums a row-stochastic influence matrix withwi j ≥ 0 and opinions in the range [0, 1] (which
stochastic updates preserved). Another work [5] aims to consider the effect of prior knowledge of
the users on one topic, over the dynamics of the DeGroot model. DeMarzo et al. [23] consider the
effect of persuasion bias on opinion formation. They suggest that persuasion bias is closely con-
nected to the social influence between two users. Therefore, the influence of one user on another
not only depends on the authenticity of the information she receives but also the connection she
shares with others in the graph. In other words, they infer that the persuasion bias of the users are
not simply the traits of the users. Rather they are strongly correlated with the network structure.
A recent work [19] attempts to combine the temporal dynamics of posts along with opinion prop-
agation. However, it does not consider many realistic scenarios, such as intermittent observations
or mesoscaled setting.

In our case, opinions can be unbounded, updates are not stochastic (influence can be negative,
and an agent’s combination rule is not convex), and zero is a special opinion value separating two
polarities of opinion.

2.3 Hybrid Approach

A more recent work [15] proposes a hybrid model, somewhere between discrete and continuous. It
proposes a biased voter model, which is a unification of the voter model with flocking. Each agent
is driven by a mix of three forces: stubbornness (ignoring others’ opinions), DeGroot’s permissive
averaging with neighbors, and biased conformance, which chooses influencing agents biased to-
ward those whose opinions are already somewhat close to that of the base agent. A preliminary
data study is used to justify the tension between these forces, and the resulting model is analyzed
to the following two ends. First, even if an individual agent changes opinion continually, the rela-
tive population sizes of different opinions converge. Second, consensus still happens under certain
conditions. This work is not concerned with influence estimation on individual edges, which is our
main goal.

2.4 Modeling Influence in Information Propagation

Yet other works [37, 56] assume fixed topology and edge weights or propagation rules, and seek
to select an initial set of “active” (or “infected”) so as to maximize some kind of cascading effect
to the rest of the network. We do not seek to maximize influence; we observe a dynamic influence
process and estimate influence strength of all edges. A set of works analyze peer pressure and also
external influence in the context of information propagation [4, 54].

Most of the work discussed earlier assumes some kind of fixed influence strength on each edge.
A notable exception is the work of Goyal et al. [27], which, however, returns to the domain of some
discrete action on the part of one agent that precipitates the same action in another agent at some
subsequent time. Given the temporal ordering, influence propagation is acyclic, an assumption
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at odds with any kind of reciprocal, continual influence. But this simpler setup allows them to
estimate an edge parameter pv,u from a form of a soft-OR influence model at each node: pu (S ) =
1 −∏v ∈S (1 − pv,u ), where S is the set of neighbors of u that have already committed the action,
and pu (S ) is compared to a threshold to decide ifu should also commit it. Another notable example
of influence estimation is by Shahrampour et al. [59], who provide a purely theoretical analysis of
the online continuous case but do not deal with asynchronous observations or validate on real data.

2.5 Self-Organizing Processes in Networks

At the very outset, opinion dynamics is a self-organizing process. In general, self-organizing pro-
cesses in networks have been widely studied in the context of statistical physics [8, 9, 11, 50],
chemistry [3, 42, 57], and biology [20, 35, 61], among others. The monograph by Bak [7] provides
a comprehensive survey. Moreover, the review in Pastor-Satorras [52] and the monograph in Van
Mieghem [63] give formal treatments for different self-organizing processes over graphs, such as
the epidemic process and electrical processes in power grids. Although such a body of works is
connected to our problem of opinion dynamics, the latter is very different from them and therefore
needs different treatment. More specifically, none of these works learns a unified family of models
in a variety of data collection scenarios, nor validates the underlying model on real datasets in a
principled yet practical manner.

2.6 System Theory

Considering that the opinion dynamical system considered in this article is an example of a linear
time-invariant dynamical system, our work is also related with system theory. System theory is a
rich field of research that deals with estimation and identification of different types of dynamical
systems [39, 44, 45, 47, 55, 64, 65, 70]. Although these works have developed the estimation theory
of LTI systems, they do not consider any data-driven opinion model that specifically aims to train
a dynamical system in the presence of periodic or aperiodic missing observations.

2.7 Modeling Influence in Other Contexts

Apart from information diffusion, influence modeling has been extensively researched in Bayesian
network modeling [34, 49] and more recently in graph representation learning [26, 28, 31, 38, 58].
However, none of these works considers the stream of observations from a network and, as a result,
cannot be applied in opinion propagation or information flow. Moreover, the objective of influence
modeling in opinion dynamics is drastically different from graph representation learning, where
the latter aims to compress the entire graph into “embeddings,” as opposed to opinion dynamics,
where the goal is to provide a predictive model of the opinion evolution process in a network.

3 MODEL FORMULATION

In this section, we introduce the two key influence models that will drive the subsequent opinion
models for different data collection scenarios:

— Linear model with independent edge weights: A linear model with latent independent edge
weights that reflect fixed user-user influences in the network.

— Linear model with latent node labels: A linear model where edge influence weights (includ-
ing polarity) depend on latent attributes of the two connected nodes. These attributes may
represent user demographics, personalities, or some other properties.

At the very outset, we model opinion as an arbitrary real number describing an agent’s opinion
or sentiment on an issue, real-world event, product, and so forth. Our notion of opinion is more
akin to opinion mining or sentiment analysis (e.g., see Pang and Lee [51]), where both polarity
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(+ve or−ve) and magnitude are important. For example, on a recently launched product, an opinion
value of +1, 0, and −1 could mean that the product is “good,” “neutral,” and “bad,” respectively,
whereas an opinion value of 1 is considered more positive than an opinion value of 0.1. We denote
the opinion of an agent i (i = 1, . . . ,N ) at time instant k as x i

k
∈ R. Next, we describe two opinion

dynamics/propagation models through time.

3.1 Linear Propagation Model with Independent Edge Weights

Let G = (V ,E) be a directed graph representing a social network. V is the set of vertices or nodes
representing agents who are forming and propagating opinions (|V | = N ). We assume that opinion
values of agents evolve as a linear function of their own and their neighbors’ previous opinions;
for instance, at time k + 1, we have x i

k+1 =
∑N

j=1 Ai, jx
j

k
, ∀k = 1 . . .K .Ai, j represents the stationary

weight or intensity with which agent j’s opinion x j

k
at time k influences the formation of agent i’s

opinion at time (k + 1). Further, node j cannot influence node i if they are not connected: (i, j ) �
E ⇒ Ai, j = 0. In addition,Ai,i represents the weight with which agent i influences itself (a measure
of stubbornness). Thus, A can be thought as a weighted adjacency matrix of the graph G with all
self-loops present. Let xk = [x1

k
, . . . ,xN

k
]T denote the vector of all opinions at time k . We have the

following equation representing the opinion dynamics:

xk+1 = Axk (1)

Note that for (i, j ) ∈ E, Ai, j can be either positive or negative. A negative Ai, j implies that agent i
does get influenced by j’s opinion, but to the opposite polarity. As a common example from real
life, person i may know that her taste in colors is the opposite of person j. Hence, person j liking
a new paint may negatively influence person i’s opinion about it. This effect is not possible in the
DeGroot model [22], as Ai, j s are restricted to be positive and sum to 1. Yet this assumption keeps
the opinions predicted by the DeGroot model at time k + 1 in the same range as the opinions in
time k . The opinions predicted by the model proposed earlier thus are not bounded. However, it
is easy to check that

‖xk+1‖ ≤ ‖A‖‖xk ‖ ≤
√
λmax (AT A)‖xk ‖,

where λmax (AT A) is the largest eigenvalue of AT A. Hence,
√
λmax (AT A) imposes a dynamic

bound for the single round of update. Another aspect of our study is that we focus on short-term
or bounded-horizon opinion dynamics, as opposed to asymptotic behavior of opinion dynamics
models. Therefore, we can allow the use of models for which

√
λmax (AT A) � 1. In the asymptotic

scenario,
√
λmax (AT A) > 1 leads to unbounded opinions as k → ∞, whereas all opinions shrink

to 0 if
√
λmax (AT A) < 1. The focus on short-term dynamics is fueled by the thought that Ai j , the

influence of a person j on a person i , changes with time. In the experiments, we try to predict the
opinions of the (k + 1)th time point using opinions of previous k time points.

3.2 Linear Propagation Model with Latent Node Types

The aforesaid linear model tries to learn influences for each edge in G, which represents a large
number of parameters (up to O (N 2)) and degrees of freedom. This entails not only high computa-
tional complexity but also lack of interpretability and potential overfitting.

In this section, we propose a model with a fewer number of parameters, which are potentially
more interpretable. We assume that nodes are naturally clustered into groups. For example, in
opinion exchange on a technical or knowledge-based topic, there may be experts and nonexperts,
whereas for a political topic, there may be leftists or rightists, and so on. In our models, we con-
ceptualize these node properties as representing cluster labels in the underlying network. In the
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preceding example, we can think of political ideology (leftists and rightists) as the clustering node
property. Let there be C labels (node properties), {1, . . . ,C}, one corresponding to each cluster.
In addition, let zi ∈ {1, . . . ,C} be the random variable denoting the cluster label of the i th agent,
i = 1, . . . ,N . Note that zi is usually a latent entity. Let θ i ∈ [0, 1]C be a probability vector with its
element θ i (j ) being the chance that node i belongs to cluster j—that is, θ i (j ) = P (zi = j ). Hence,∑C

j=1 θ i (j ) = 1. In other words, we assume a time-invariant probabilistic model for cluster mem-
bership: zi follows a multinomial distribution with parameters θ i .

Further, we can assume that agents belonging to a group display similar behavior toward the
phenomenon of opinion propagation. For example, all experts have similar influence on other ex-
perts or nonexperts. Let Bl1,l2 ∈ R, 1 ≤ l1, l2 ≤ C denote the influence of a member of the l th

1 cluster
on a member of the l th

2 cluster. The random influence of the jth agent on the i th agent is given by
Ai j |(zi , zj ) ∼ D(ξξξT

zi
Bξξξ zj

), where D is a prespecified distribution and ξξξ z is the one-hot represen-
tation of the cluster label. Considering that E(ξξξ zi

) = θ i , one may write Ai j ∼ Ezi ,zj
[D(ξξξT

zi
Bξξξ zj

)].
Finally, an opinion stream xk , k = 1, . . . ,K is generated as xk+1 ∼ N (Axk ,σ

2). Hence, the final
generative model is written as follows:

zi |θ i ∼ Multinomial(θ i ) ∀i = 1, . . . ,N (2)

Ai j |(zi , zj ) ∼ D
(
ξξξT

zi
Bξξξ zj

)
∀i, j = 1, . . . ,N (3)

xk+1 ∼ N (Axk ,σ
2) ∀k = 1, . . . ,K (4)

In practice, θ i , the a priori cluster membership probability vector is not known. Therefore, fol-
lowing the traditional approaches to stochastic block modeling [1], we assume that θ i ∼ Dir(α )
for all i ∈ V , with α being the concentration parameter vector of a Dirichlet distribution. It is
interesting to note that if D(μ ) is a normal distribution with mean μ, then E(Ai j ) = θT

i Bθ j . How-
ever, for other distribution, we estimate the expected edge influence by taking an average over a
large number of simulated values. Such a model for generation of cluster influences is inspired by
mixed-membership or weighted stochastic block models [1] introduced recently. Hence, we call
this the stochastic block linear model (SBLM). In Section 5, we will describe algorithms for estimat-
ing parameters B and θ i , i = 1, . . . ,N . The number of parameters is O (CN +C2), which is much
less than the linear model (O (N 2)) described in the previous section.

4 DATA ACQUISITION SCENARIOS

The models proposed earlier are specified by the set of parameters Ai, j : i, j ∈ {1, . . . ,N } for the
linear model with independent edge weighting and Bu,v : u,v ∈ {1, . . . ,C} with θ i : i ∈ {1, . . . ,N }
for the linear model with latent node type SBLM. Usually, there can be no direct observation of
these parameters in a real social network. However, it is possible to obtain the opinions of various
agents x i

k
at different time instants (see Section 6). In our application, agents express their opinion

continually via posts, which can take the form of ratings, tweets, or comments. Textual posts can
be converted into numeric opinion via sentiment analysis [51]. We use the dynamics of these opin-
ions to estimate the parameters. Thus, the problem of automatically learning the parameters A, B,
and θ i , given the observed x i

k
s, is critical. In this section, we explore various scenarios in which

opinion data can be acquired. Figure 1 shows an illustrative explanation of the three data collec-
tion scenarios, namely full, periodic, and aperiodic data acquisitions. Before describing them, we
first describe one hypothetical data collection scenario, called omniscient data observation, in the
following.

Omniscient Observations. Note that, as described in Figure 1, with each of these data collection
regimes, we associate a data collection scenario called omniscient data collection, where posts from
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Fig. 1. Illustration of various data acquisition scenarios. Panel (a) shows a hypothetical network of users

for which opinions are shown in (b) through (g). The users are color coded, and the color of the bars in (b)

through (g) correspond to the color coding of the users. Panels (b), (d), and (f) show omniscient timelines—the

hypothetical case—where all users synchronously express their opinions in a given timestep. However, since

that is not possible, we translate the real observations, where opinions of only a subset of users is available at

a given timestep into an omniscient-like stream, by extrapolating from previous opinions-which we refer to

as actual timelines. This is shown in panels (c), (e), and (g). Without loss of generality, suppose that at each

timestamp only one user posts her opinion. If a user u has not posted at time tk , then her opinion at tk is

taken to be the same as her last observed opinion. Panels (b) and (c) show data for full observations. Panels

(d) and (e) consider data for the periodic case, which indicate that between any two consecutive observations,

two posts are missed. Panels (f) and (g) consider data for the aperiodic case, where the number of missing

observations between two consecutive observed messages varies across time.
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all users together are available in each timestep. However, this is an extremely ideal situation, be-
cause in practice the messages are posted asynchronously, and at each timestep only one message
is available.

Translating the Observed Data into an Omniscient-Like Stream. Our basic dynamical model (Equa-
tion (1)) also operates similarly, as it updates the opinions of all users together in each timestep.
Hence, to make our model operable and trainable for the observed dataset, it is necessary to trans-
late the observed data into the omniscient-like stream. Therefore, it is crucial to assign opinions of
all users in each timestep even if the some of the opinions are not observed in the collected data.
To that aim, we assign the opinion xu

k
of useru at time k as the last opinion she posted a user, if she

has not posted at time k . More specifically, our basic opinion model can be described as follows.
In general, the opinions are posted asynchronously. For instance, at time k , one agent j may

post his opinion, whereas another agent i may not. Let S be the set of all time instants when some
agent has posted his opinion. Moreover, let Si = {k |x i

k
exists} ⊆ S, ∀i = 1, . . . ,N , be the set of all

time instants when agent i has expressed an opinion. In addition, let x i
k− be the last posted opinion

by an agent i before and excluding time k :

x i
k = Ai,ix

i
k− +

∑
j ∈N (i )

Ai, jx
j

k− = AT
i xk−, ∀k ∈ Si and 1 ≤ i ≤ |V |

⇒ yk+1 = Ayk , (5)

where N (i ) is the set of neighboring vertices of i , AT
i is the i th row vector of matrix A, and yk is

defined as follows:

yi
k =

⎧⎪⎨⎪⎩
x i

k
if k ∈ Si

x i
k− if k � Si

In the following, we describe the actual data collection scenarios. For each of these cases, we
suitably translate the observed data and the underlying model as described earlier. From now on,
we describe yk as the observed opinion during the k th timestep in the data.

4.1 Full Observations

Here, we assume that all of the posts that are made on the timeline of the users are available. This
is an ideal situation, when an exact and exhaustive set of opinions posted is available over time.

It is a rare scenario in practice but a potentially useful baseline on which to evaluate any in-
fluence estimation model. Therefore, we conducted three in-house social influence games where
users were connected in a small network to exchange their views on some controversial topics.
The datasets collected from these in-house systems offer access to all posts of the users, providing
the most favorable scenario in which we can evaluate a proposed system. For such a system, the
effective dynamics is the same as Equation (5).

4.2 Periodic Observations

The full observation setting described earlier, despite being simple and elegant, is practically diffi-
cult to achieve. For example, Twitter witnesses more than 500 million tweets per day.1 A crawler

1http://www.telegraph.co.uk/technology/twitter/9945505/Twitter-in-numbers.html.
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can collect only a 1% sample from Twitter. Only a few posts of each user are likely to be collected
within this budget. The ones collected are likely to skip irregular numbers of other posts. In this
section, we assume that the data collector omits data in regular (equal) intervals.

That said, in this model, we assume that the crawler misses posts with a constant frequency, say
t per time window between any two consecutive posts made in k and k + 1.2 This means that
between two observed timestamps, opinion propagated t times across various users in the network.
Thus, using simple calculations, we can write the propagation model as follows:

yk+1 = At yk ∀k = 1, . . . ,K (6)

Here, At is the influence matrix A, defined previously, raised to the tth power. We refer to this
model as the periodic linear model (PLM). As is well known, At

i j aggregates over all paths of length
t between nodes i and j.

4.3 Aperiodic Observations

In PLM, we assumed a constant period, t (equivalent to the maximum number of messages missed
between two consecutive timestamps), for all consecutive timesteps. However, human activities
happen in bursts. For example, people post more messages on social networks during the day than
at night. Hence, it is expected that the number of missing messages posted during the day would
be more than at night.

In an aperiodic linear model (ALM), we assume that the number of missing posts between two
consecutive time windows varies from one time window to another. As before, let yk denote the
opinion vector for all agents at time k . Let tk ,k = 1, . . . ,K be the number of times opinion propa-
gates during the k th time window. The opinion dynamics is then given by

yk+1 = Atk yk ,∀k = 1, . . . ,K . (7)

Note that the model is characterized by parameters tk ,k = 1, . . . ,K , in addition to the weighted
adjacency matrix parameters A. The set of parameters TK = {tk |k = 1, . . . ,K } is called the skip set,
with tk denoting the number of iterations, which has been “skipped” at the k th time window. We
denote the preceding model as an ALM.

4.4 Mesoscaled Data Acquisition

In contrast to the preceding data gathering scenarios, which accounts for several semantics of in-
termittent observations in the temporal dimension, we also consider mesoscaling, which accounts
for limited observations in the network or spatial dimension. More specifically, here we learn the
opinion dynamical model, given an average reading of opinions of users in a community.

In physics and meteorology, mesoscale or mesoscopic analysis refers to an intermediate scale
between the finest (microscopic) and coarsest (macroscopic) observable levels of analysis or

2The corresponding time window can be defined as (k, k + 1).
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observation. In many real-life scenarios about opinion dynamics, fine-grain per-node opinion data
may not be feasible or profitable to acquire. For example, it is expensive to collect individual rat-
ings for a particular movie from everyone exiting a theater or individual political sentiments from
exit polls at elections. Instead, it may be easier to acquire an aggregated or average opinion for a
group or community c of people, such as a box office estimate in one movie theater or sampled
political sentiments of people in a polling booth. Aggregated observations may also be regarded
as protecting the privacy of individuals.

In this scenario, given a graphG = (V ,E) with the set of communities C, we assign each user u
to one community c (u) ∈ C. We assume that opinions of the users evolve under the usual setting
as described in Equation (1). However, the individual node opinions are not accessible. Instead,
one can only observe the mesoscaled community-level opinions x̄c

k
, where x̄c

k
is the average of

opinions of all nodes in community c ∈ C at timestamp k . More precisely,

x̄k+1 = Ax̄k , where, x̄k =
(
x̄c (u )

k

)
u ∈V .

(8)

5 MODEL PARAMETER ESTIMATION

Our final step is to estimate the parameters in models described in Section 3 from data acquired
in scenarios described in Section 4. Here, we describe formulations and algorithms for model pa-
rameter estimation in the most common or important scenarios. Note that it is not known a priori

if the collected data best explains the periodic and aperiodic observations, as well as the corre-
sponding number of missing updates. Therefore, we obtain the number of missing opinions per
time window (t for periodic and tk s for aperiodic) using cross validation. Hence, the time intervals
obtained via grid search refers to the estimate of the unobserved variable: the number of events
that occurred between any two observed events. This cannot be directly estimated from the crawl
schedule.

5.1 Estimation from Full Observations via Regularized Least Squares

Our objective is to estimate the matrix A from opinions acquired using the full observations sce-
nario (Section 4.1). Let D = {x i

k
|k ∈ Si , i ∈ V } be a dataset of all opinions posted by all agents

in V . We assume that agent i forms its opinion at time k ∈ Si based on previously posted opin-
ions of its neighbors. Then, the loss incurred in predicting all observations by agent i is given by∑

k ∈Si
| |x i

k
− AT

i xk−||2. Adding an L2 regularizer, λ | |Ai | |2, we can estimate the optimal parameter
A∗i by solving the following problem:

min
Ai

∑
k ∈Si

������x i
k − AT

i xk−
������2 + λ | |Ai | |2 (9)

s.t. Ai, j = 0 whenever (i, j ) � E and i � j

Here, λ is the user-defined regularization parameter andAi, j is the jth entry of vector Ai . By solving
|V | such optimization problems (one for each i), we can obtain A∗i , the optimal value of Ai , for all
i = {1, . . . ,N }, and thus estimate the entire optimal A matrix A∗.

Let x̃ i
k− = Ui j xk−,∀k ∈ Si , whereUi j is a N × N diagonal matrix such thatUi j (j, j ) = 1 if (i, j ) ∈

E. In addition, let Xi = [x̃ i
k−|k ∈ Si ]T be a |Si | × N matrix with rows as x̃T

k−, and x̄ i = [x i
k
|k ∈ Si ]T

is a |Si | × 1 column vector. The preceding problem is the same as solving A∗i = argminAi
(‖x̄ i −

Xi Ai ‖2 + λ‖Ai ‖2). It is easy to check that this problem is solved when

A∗i = ((Xi )T Xi + λI)−1 (Xi )T x̃ i . (10)

Increasing λ decreases ‖A∗‖F , which can be thought of as a measure of complexity of the model
[62]. Here, | |A∗ | |F =

√
Trace(A∗T A∗) is the Frobenius norm of A∗.
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5.2 Periodic Estimation

Following the assumptions laid out earlier in this section, we can write the regularized loss function
for learning A, in periodic opinion propagation (Section 4.2), as L(A) =

∑K
k=1 ‖yk+1 − At yk ‖2 +

λ‖At ‖2. The best estimate of A can be obtained by minimizing L(A). Unfortunately, L(A) is not
convex in A. Hence, the minimization can get stuck in local minimum. In addition, we note that
for most prediction tasks, we only need to estimate Mt = At , as we only observe opinions yk that
are propagated with the constant frequency of t per time window. Let Gt = (V ,Et ) be the graph
generated by including all t-hop connections in the set of edges Et . It is clear that Mt (i, j ) = 0 if
(i, j ) � Et . We can learn the optimal M∗t by solving

min
Mt

K∑
k=1

‖yk+1 −Mt yk ‖2 + λ‖Mt ‖2 (11)

s.t. Mt (i, j ) = 0, whenever (i, j ) � Et .

One way of obtaining A∗ from M∗t is to calculate A∗ = (M∗t )1/t using a root-finding algorithm [33].

5.3 Aperiodic Estimation

Given a set of opinions, yk , k = 1, . . . ,K and a skip set tk ,k = 1, . . . ,K , analogous to previous
discussion, we can write the following optimization problem for learning the weighted adjacency
matrix parameter using the squared error as

min
A

K∑
k=1

| |yk+1 −Atk yk | |2 + λ‖A‖2F (12)

s.t. Ai, j = 0 whenever (i, j ) � E and i � j .

The preceding problem is also a nonconvex optimization problem. However, since the feasible set is
convex, we can find a local optimum for that problem using the projected gradient descent method.
Let YK = {yk |k = 1, . . . ,K } be the set of all opinions. Let f (A;YK ,TK ) =

∑
i | |yk+1 −Atk yk | |2

+λ‖A‖2
F

. The gradient of f (A) w.r.t. A can be written as

∇A f (A;YK ,TK ) =
∑

i

tk
[
−2Atk−1yk yT

k+1 + yk yT
k (Atk )TAtk−1 +Atk−1yk yT

k (Atk )T
]
+ 2λA. (13)

The projected gradient descent algorithm for finding optimal A is described in Algorithm 1. Here,
the gradient matrix ∇A f (A;YK ,TK ) is evaluated using the expression in Equation (13). The pro-
jection step Π(A,E) ensures that resulting A is projected back to the feasible set—that is, Ai j = 0 if
(i, j ) � E. Although in general the algorithm is not guaranteed to converge to the global optimum,
in practice it converges quickly to a local optimum.

ALGORITHM 1: Learning A using projected gradient descent.

Data: G = (V ,E).
Input: Opinion vectors YK , skip sets TK , initial A0, convergence threshold ϵ , edge set E
Output: Weighted adjacency matrix A
initialize: A← γA0

while ( | |∇A f (A;YK ,TK ) | | ≥ ϵ ) do

A← A − s∇A f (A;YK ,TK );
A← Π(A,E)

end

Return A
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Note that here we assume the skip set TK to be given. In practice, we can restrict each tk to take
values from a set {1, . . . , tmax }, which can be optimized using cross validation.

5.4 Parameter Estimation with Mesoscaled Data (MLearn)

Let S be the set of all time instants when the mesoscaled opinions are observable. Let the input
graph be G (V ,E), the set of communities be C, and community-level mesoscaled opinions be x̄c

k
with c ∈ C and k ∈ S . Our task in this case is to estimate the edge weight matrix A. We cast this
problem as the following optimization problem:

min
A

∑
i ∈V

∑
k ∈S

������x̄c (i )
k
− AT

i x̄k−1
������2 + λ | |Ai | |2 (14)

s.t. Ai, j = 0 whenever (i, j ) � E and i � j . (15)

Here, given any c ∈ C, x̄c (i )
k
= x̄c (j )

k
for all k ∈ S and i, j with c (i ) = c (j ).

Considering that this is a convex problem, we used least square technique to estimate the pa-
rameters. Note that we have the opinion of each node as the average opinion of the users of the
community shared by u, which only changes the input opinions to the learner but not the under-
lying learning algorithm.

5.5 Stochastic Block Model Estimation with Node Types

Let yk , k = 1, . . . ,K be the opinions acquired in a periodic/aperiodic data collection setting. Here,
we attempt to learn the edge influence and cluster memberships from these temporal data, which
are assumed to be generated following the generative model described in Section 3.2.

Recall that the cluster membership probability vector θ i for each node i ∈ V is drawn from
Dir(α ). (α is the concentration parameter vector for the Dirichlet cluster distribution.) The cluster
membership indicator vector is ξξξ zi

for each node i with cluster label zi . The edge influence from i
to j is Ai, j . The block interaction matrix is B.

Given opinion data y[1 : K], our task is to infer all of these unknown parameters θ [1 : N ], z[1 :
N ], A. Note that only B and α are independent parameters; other variables are all latent. The
proposed model is a variant of the stochastic block model. However, unlike in existing work [1], our
setting does not offer access to edge influence values directly. Instead, we observe only a stream of
temporal data, generated linearly from previous opinions using the hidden edge influences. Hence,
the existing inference techniques for the stochastic block model cannot be directly applied here.

To estimate the parameters Λ = {θ ,A, z}, first we compute the likelihood of the opinion stream.
Combining the opinion model with the other sources of stochasticity, we write the joint model for
opinions and graph parameters as follows:

Pr
(
(yk )K

k=1,Λ|α ,B
)

∝ Pr
(
(yk )K

k=1 |A
)

Pr(A|(zv )v ∈V ;B) Pr((zv )v ∈V ,θ |α )

= exp
⎡⎢⎢⎢⎢⎣
−∑K

k=1 | |yk+1 −Atk yk | |2

σ 2

⎤⎥⎥⎥⎥⎦
∏

(u,v )∈E

D
(
ξξξT

zu
Bξξξ zv

) ∏
u,c ∈V×[1:C]

θu (c )ξξξ zu (c ) Dir(θ |α ) (16)

There are lot of techniques to solve graphical models and their variants, and we appeal to varia-
tional inference (directly adopted using the work of Aicher et al. [1]). Choosing different forms for
D, such as normal, exponential, and Pareto distributions, we estimate Ai j , which in turn is used to
predict the opinion in the next timestamp (Section 8). In the next section, we describe the dataset
construction and metrics used.
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Table 1. Summary of the Nine Datasets Used for Experimental Validation

Dataset # Nodes # Edges # Messages Max Messages/Node Min Messages/Node

Continents: Europe vs. North America 102 1,020 2,182 52 6

Colleges: IIT Delhi vs. IIT Bombay 102 1,020 1,758 40 3

Occupation: Startup vs. Job 102 1,020 1,439 33 4

Twitter: Delhi elections 548 5,271 20,026 102 20

Twitter: Movie 457 4,886 14,016 236 21

Twitter: Series 947 10,253 13,203 291 20

Twitter: Fight 848 10,118 21,526 402 21

Twitter: Bollywood 1,031 34,952 46,845 867 22

Reddit (politics network) 556 94,312 64,366 2,571 20

The first three correspond to the topics used for in-house controlled experiments on human subjects. The last six corre-
spond to realworld datasets obtained from Twitter and Reddit.

6 DATASETS

We use nine diverse datasets to evaluate our algorithm. For each, we require the network topology
and the opinion values of the users over a period of time. The datasets, summarized in Table 1, can
be placed in two groups. The first three are generated by us, in-house, through carefully controlled
and monitored social influence processes. The last six are derived from Twitter and Reddit forums,
provided as is. The distinction is that in the first three cases, we are able to read opinion values at
the time granularity of our choice, so as not to miss any updates, whereas for the last six, we have
no such control. The first three cases provide us with valuable insights, as in these cases we were
able to capture all visible opinion values while also minimizing the influence of external sources.

6.1 Controlled Social Experiments

The set of agents in our controlled experiments consists of a class of 102 students in a course on
information retrieval taught in the Department of Computer Science and Engineering at Indian
Institute of Technology Kharagpur. The experiments were performed in a laboratory setting, where
each student sat in front of a desktop computer and interacted with 10 other randomly assigned
students (designated social neighbors) through a Web interface (as shown in Figure 2) for a period
of 3 hours. (To maintain both connectivity and randomness of the social graph with a modest
number of nodes, a realistic degree distribution like power law could not be considered.)

On each topic, the agents refined their opinions continually by communicating with their graph
neighbors using the text box. To avoid externalities, participants were not allowed to access the
Web or discuss anything with each other verbally. All communication through the interface was
recorded. Social neighbors were kept anonymous so that the agents did not become biased by the
real-life identity of another agent.

To collect one dataset, we started by broadcasting to agents a topic, posed in the form of a com-
parison between two entities. The three topics given to the students involved these comparisons:

• Continents: The better place to live: Europe vs. North America.
• Colleges: The better college to attend: IIT Delhi vs. IIT Bombay.
• Occupation: The more preferable occupation: startup vs. a regular job.

These topics were chosen because most agents did not have a strong prior opinion but had some
knowledge about the subjects. This was done to ensure that at least some of the agents would
show changes in their opinions during the experiment. Every time an agent posted a message, the
interface automatically reported the current opinion value, which was modeled as a real number in
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Fig. 2. Web interface for opinion posting for the controlled experiment.

the range [−1, 1]. The sign represents polarity of the opinion (e.g., if joining a startup is preferred,
then the opinion score assigned tends to −1, whereas the reverse is true for the other choice),
and the magnitude represents the degree of conviction. Only the message from an agent, and not
his or her current quantitative opinion, was shown to neighboring agents. Agents were asked to
make opinion messages self-contained. Every experiment proceeded for 1 hour, after which the
experiment was terminated. At the end of a live experiment, we obtained one dataset, containing
all visible timestamped opinions of every agent.

6.2 Twitter Datasets

Via hashtags, we chose five controversial Twitter topics (an election, a movie, a TV series, a boxing
match, and a celebrity hit-and-run case) and crawled related tweets during a period of intense
activity. This provided us with a very good opportunity to measure the performance of our system.

6.2.1 The Network. For each topic, we filtered the candidate set of agents in three steps. We
started with around a million tweets. To remove corporate accounts, bot accounts, and spammers,
we filtered the set of users based on the number of followees, number of followers, and the number
of tweets posted by the user. We only preserved those users who had between 100 and 10,000
friends, between 50 and 1,000 followers, and between 200 and 10,000 tweets posted during the
account’s lifetime. This resulted in a set of a good number of users who are active on Twitter and
also enthusiastic about the topic. For these users, we collected, using the Twitter REST API, the
user IDs of all of their followees, followers, and up to ∼3K most recent tweets. We only collected
tweets posted during the week of occurrence of the concerned event. With the information about
both the followees and followers of the preselected users, we were able to create the complete
follower-followee network. Finally, from these users, we selected the largest strongly connected
component such that each selected user posted more than 20 tweets. The network thus generated
is used to test our system afterward.

6.2.2 Opinion Values. Considering that tweets are limited to only 140 characters, we accu-
mulated the tweets posted by every user during a single hour and generated a document. Each
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document was turned into an opinion score. “Opinion” here connotes a positive or negative atti-
tude to the particular issue/event, which was detected by subjecting these hourly documents to a
sentiment analysis tool specifically designed for Twitter [29]. The method relies on scoring tokens
based on their co-occurrence with positive emoticons such as a smiley “:)” or a negative emoticon
or frowny face “:(”. Prior work has shown the efficacy of using emoticons [24] for sentiment de-
tection. For example, if in our dataset we find the word love to co-occur in x tweets containing the
smiley “:)” and to co-occur with y tweets containing the frowny face “:(”, the sentiment score
given to the word love according to the algorithm is equal to x/(x + y). This gives the relative
propensity of the token to be used in a positive content. To get a clean set of scored sentiment to-
kens, we only used tweets that were written in English and only considered tokens that occurred
at least 20 times in our dataset. For every document, we finally obtained a single sentiment score in
the range [−1, 1]. The score represents the relative proportions of words with positive and negative
connotations.

6.2.3 Collected Twitter Data. We gathered the following Twitter datasets for testing our pro-
posals. The details of the datasets are given here and also summarized in Table 1:

• Delhi elections 2013 (Tw:Politics): The Delhi Legislative Assembly elections of 2013 was a
keenly contested event with three major parties (two old parties, BJP and Congress, and
one newly formed party, AAP) winning roughly equal vote share. For testing our system,
we used the Twitter search API to collect tweets containing the following hashtags: #BJP,
#AAP, #Congress, and #Polls2013. The first three represented the hashtags for the three
major parties competing in the elections, whereas the fourth was the most popular hashtag
corresponding to the event. We gathered tweets December 9 through 15, 2013. This period
corresponds to the week following the declaration of results on December 8, 2013. The
obtained dataset has around 20K posts and a connected graph having 548 users and 5.2K
edges.

• Release of Avengers: Age of Ultron (Tw:Movie): This superhero movie was released in the
first week of May 2015. We considered the hashtags #Ultron, #marvel, and #avengers, and
collected the tweets from April 28 through May 5, 2015. The resulting network has 487 users
and 4.8K edges and around 14K tweets. One important aspect of this dataset is that all of
the collected users have a positive opinion in all posts.

• Season 6 of Game of Thrones (Tw:Series): The sixth season of this American thriller-drama
was first aired on April 12, 2015. We collected the tweets with hashtags #GOT and #game-
ofthrones from April 8 through April 15, 2015, resulting in more that 21K posts and a net-
work of 947 users and 10K edges.

• Boxing match between Floyd Mayweather Jr. and Manny Pacquiao (Tw:Boxing): This boxing
match was a much-hyped event often billed as “The Fight of the Century.” This event took
place on May 2, 2015. It triggered a huge discussion in Twitter. We gathered the related
tweets from April 29 through May 7, 2015, which led to a rich collection of 21K messages
and a network of 848 users and 10K edges.

• Bollywood actor hit-and-run case verdict (Tw:Bollywood): This controversial event is the
final hearing on the hit-and-run incident by Salman Khan, a popular Bollywood actor.
This event triggered an intense war-of-words among many users, some openly supporting
Khan. We collected the tweets with the related hashtags #Salman and #HitAndRun, among
others, from May 7 through May 16, 2015. Finally, we obtained a corpus of 20K tweets with
a network having about 1K nodes and about 46K edges.
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6.3 Reddit Politics Data

Reddit is a social post curation Web site, where users submit content in the form of text posts or
links to Web sites with the content. More than 6% of online adult users use Reddit.3 Content in
Reddit is categorized by areas of interest called subreddits. Reddit boasts more than 7,000 active
subreddits4 on topics as varied as music, politics, sports, world news, and programming, among
others.

We collected data of Reddit users who posted content in the subreddit “politics” from July 1 to
December 31, 2012. We crawled all posts made by Reddit users during the preceding period in the
subreddit politics. We obtained 120K posts made by 31K users.

6.3.1 The Network. The social network in Reddit is not explicit. We applied certain heuristics
to recover an approximate user network. We created an undirected network taking 31K users as
vertices and assumed the existence of an edge between two users if there existed two subreddits
(other than politics) where both posted during the given time period.

Similar to the case of the Twitter data, we randomly selected approximately 500 users such that
the users had made more than 20 submissions during the given period and the network between
them formed a single connected component. We ended up selecting a subnet of 556 users for the
subsequent experiments.

6.3.2 Opinion Values. Most of the posts made by users of Reddit were in well-formed English.
Thus, we used the standard linguistic analysis tool LIWC [53] to analyze sentiment scores from
them. We computed the sentiment of a post as the difference between the positive emotion score
and the negative emotion score, as returned by LIWC. The results were normalized by mapping
the range of values obtained to the range [−1, 1] using linear scaling.

7 EVALUATION METRICS

In this article, we adopt a data-driven approach to opinion modeling. To this end, we assume that
we have access to actual opinions (ground truth) expressed by people interacting on the social
network (see Section 6). We estimate edge influences (Section 5) under diverse settings, which
are then used to predict future opinions. We evaluate the utility of our proposal by measuring
the deviation of the predicted opinion from actual opinion. If yk ∈ R |V |×1 is the opinion vector
expressed by users at timesteps k = 1, . . . ,K , the predicted opinion vector

ŷk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Âyk if a model is FLM,

Â
t
yk if a model is PLM,

Â
tk

yk if a model is ALM.

7.1 Normalized Error

For real opinions, a natural measure of error is the squared error of the predicted opinion with
respect to the observed opinion. Thus, error ek = |yk − ŷk |. Hence, the root mean square error
(RMSE) for all nodes at time k + 1 is

E =

√
eT

k
ek

N
.

3http://pewinternet.org/Reports/2013/reddit.aspx.
4http://www.reddit.com/about/, as on June 7, 2014.
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However , this error metric is sensitive to the scale of the input data. Hence, we use the normalized

error metric:

NRMSE =
E

(ymax − ymin )
, (17)

whereymax =max(x i
k

),∀(i )N
i=1 &∀(k )K

k=1, andymin =min(x i
k

),∀(i )N
i=1 &∀(k )K

k=1, are the maximum
and minimum values of all observed opinions, respectively.

7.2 Quantized Error

Another metric that captures the polarity of the opinions is the quantized error. We define this
as the fraction of times the polarity of the predicted opinion matches the observed one. Thus, the
quantized error at time instant k + 1 is given by

QError =
1

N

N∑
i=1

1
[
yi

k+1ŷ
i
k+1 < 0

]
, (18)

where1(·) is the indicator function. The productyi
k+1ŷ

i
k+1 is positive only if yi

k+1 and ŷi
k+1 have the

same sign.

7.3 Relative Improvement Factor

Apart from the preceding two metrics, we also use the improvement factor (IF) metric as a perfor-
mance indicator for an opinion model with node classification. Formally, this is defined as follows:

IF =
NRMSEnode-classification − NRMSEindividual-edge-weighting

ymax − ymin

7.4 ΔNRMSE and ΔQError: Metrics Used in Mesoscaling

To evaluate the utility of our mesoscaling model estimators, we first compute the errors (nor-
malized RMSE (NRMSE) and quantized error) for the community-level opinions and then report
improvement of these metrics w.r.t. the same in the individual node levels. More formally, to obtain
the error at time k + 1, we compute the following:

Comm-NRMSE =

√
1

|C |
∑
c ∈C

1

|c |2
[∑

i ∈c

(
yi

k+1 − ŷ
i
k+1

)]2

Comm-QError =
1

|C |
∑
c ∈C

1

|c |
∑
i ∈c

[
1
(
yi

k+1ŷ
i
k+1 < 0

)]
Then we report the following:

ΔMetric = −
1

|C |
∑
c ∈C

Comm-Metric[c] − Node-Metric[c]

Node-Metric[c]

Here, Metric is either NRMSE or QError, Node-Metrics are NRMSE or QError computed over the
specified nodes, and Comm-Metrics are NRMSE or QError computed at the community level.

8 RESULTS

In this section, we establish that our proposed models are superior to competitive prior approaches.
We report experimental results across all nine datasets—three datasets generated from in-house
debate games and six datasets obtained by crawling Twitter and Reddit. For the first three datasets,
the background process is modeled using the full observation system, as all opinions of every
participant are captured in the dataset. For the other six datasets, we model the background process
using three variants of our models: (i) periodic, (ii) aperiodic, and (iii) SBLM. To better understand
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the performance of our models with respect to the existing state-of-the-art techniques, we consider
four baseline opinion propagation models: the voter model [14], the biased voter model [15], the
flocking model [15, 30], and the DeGroot model [22]. To the best of our knowledge, this is the first
work reporting a data-driven comparison of opinion exchange models using real-world datasets.

8.1 Baselines

We compare our results with four popular state-of-the-art baseline models:

• Voter model [14]: In this strategy, at each step, first a node within the network is selected
at random; the next one of its neighbors is chosen uniformly at random (including itself),
then the original adopts the chosen node’s opinion as its own.

• Biased voter model [15]: The biased voter model introduces a bias over the voter model,
where the bias being that a user is most influenced by the neighbor whose opinion is closest
to its opinion.

• Flocking model [30]: In the flocking model, a node i with opinion xi first selects the set of
neighbors j having opinions x j so that |xi − x j | < ϵ and then updates its own opinion by
averaging the opinions of the selected neighbors.

• DeGroot model [22]: The DeGroot model assumes that a node within the network updates its
opinion by taking a weighted average of its neighbors’ opinion. In particular, this proposal
assumes that the array of weights forms a row-stochastic influence matrix with wi, j ≥ 0
and opinions in the range [0, 1] (which stochastic updates preserve).

8.2 Performance Comparison

For each approach, we learn the parameters that are best able to explain the data. Note that al-
though we know how regularly we are sending a crawling request to a search API, we do not
know how regularly the tweets are missed in the collected data thus obtained. So effectively, it is
not known a priori if a periodic or aperiodic strategy best explains the collected data. Consequently,
we consider all models driven by different data collection mechanisms (FLM/ALM/PLM) as well
as influence types (edge weight–based LM/SBLM) in depth. Although we know the timestamps
for each message, we do not know how many posts have been missed between two messages.
Therefore, while training ALM or PLM, we estimate the number of hidden updates between two
consecutive posts (t for PLM and tk for ALM) using cross validation:

• FLM (full (observations) linear model): Here, we consider that all opinions of each user are
known.

• PLM (periodic linear model): Here, the opinions are always updated after every (say) t
timesteps. Note that the collected opinion stream only contains the timestamps of the mes-
sages crawled. The actual number of missing updates t are not known. Thus, we estimate t
using cross validation.

• ALM (aperiodic linear model): Here, the length of time interval between subsequent opinion
observations varies across time. Considering that the actual number of missing updates tk
are not known, we obtain them using cross validation.

• SBLM (stochastic block approach to linear models): Here, we consider the node labels to model
the edge weights. The base edge weights are captured using both ALM and PLM. However,
we only report the results with base edge weights being picked up using ALM alone.

Tables 2 and 3 show a comparative analysis of the opinion prediction error (NRMSE and quan-
tized error) of four baseline algorithms along with different variants of our algorithm. In particu-
lar, Table 2 shows the results for the datasets crawled from Twitter, whereas Table 3 describes the
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Table 2. Opinion Prediction Performance for Periodic and Aperiodic Observation Scenarios

for All Crawled Datasets for the 90% Training Set

Table 3. Opinion Prediction Performance in Full Observations

for All the In-House Games

performance for the datasets gathered from the in-house games. The upper half of each table re-
ports the normalized mean square error that is the actual opinion prediction error, whereas the
rest report the quantized error that is the error in prediction of opinion polarity. We observe that
across all of these datasets, the overall performance of our schemes is substantially better than all
of the baselines.

8.2.1 Performance Analysis: NRMSE. The top half of each of Tables 2 and 3 shows a comparative
view of actual opinion-prediction error.

Voter Model and Biased Voter Model. Performance of the voter model is particularly poor. It relies
on random opinion updates and thus evidently loses information of actual heterogeneous dynam-
ics. Moreover, such a version of the voter model keeps the set of opinions in a graph invariant
throughout the process. This intrinsic property of the voter model prevents the opinion values
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from not growing in a larger space, which thereby goes against the spirit of the continuous opin-
ion model. The biased voter model attempts to overcome these limitations by introducing node
weights. However, the performance of the biased voter model is worse than ALM or PLM. A closer
scrutiny reveals that the biased voter model parameterizes the node weights, but due to uniform
edge weights, it is unable to capture the actual influence dynamics.

Flocking Model. Note that the NRMSE for flocking is substantially lower than the voter model
(often the biased voter model as well) in most cases. Recall that this model updates the opinion of
a node by averaging those of her neighbors that are very close to her. Such a selective averaging
strategy makes it functionally similar to the linear averaging models. As a result, the performance
of this model is better than the voter model and her variants.

DeGroot Model. The performance of the DeGroot model is fairly competitive for Reddit and
Twitter. This is mainly because it incorporates different edge weights that capture the actual dy-
namics of information flow from one node to another, which is heavily neglected in the other three
baselines. The relatively better performances of the flocking and DeGroot models also reflect an
inherent linearity in the dynamics that justifies our choice of a more generic linear model.

Linear Propagation Models. ALM and PLM perform significantly better than all baselines in al-
most all cases. A possible explanation can be that it captures the effect of intermittent observations,
such as the phenomenon of periodic/aperiodic observations, which none of the baseline algorithms
take care of. The learned adjacency matrix in our model is not limited to positive entries and row
stochasticity, which are the major features of the DeGroot model. Being the most generic linear
model, it captures the negative influence, opinion fluctuation, and so forth, and allows formation
of any generic linear combinations of opinions rather than their convex combinations. This is evi-
dent from the few real-life examples in Figure 4, where panels (b) and (c) show that the opinion of
a user (C) may not follow as a convex combination of the opinions of the users (B, A) she follows.

The performance of SBLM is significantly better than ALM and PLM. This is because in most real
scenarios, the edge weights depend on the attributes of the connecting nodes. In fact, SBLM offers a
perfect accuracy in Tw:Movie, Tw:Series, Tw:Boxing, and Tw:Bollywood. SBLM correctly captures
that and enhances the performance. We give the details of the results for SBLM in Section 8.2.7.

8.2.2 Performance Analysis: Quantized Error. As we can see from the bottom half of Table 2,
quantized error is significantly lower in all datasets than the baselines. We also observe that SBLM
substantially improves the performance as compared to the aperiodic and periodic counterparts.
This is because SBLM can accurately model the edge influences by incorporating possible node
attributes. For the three social games (Table 3), the performances of all algorithms are quite good.
Our model gives 100% accuracy in these three games. This is because the active participation of the
users in the experiments lead to a rich dataset of opinions with a nice dynamical flow without any
intermittent observations. Hence, all algorithms are able to capture the dynamics of the process
with high prediction accuracy.

8.2.3 Stability to Training Size. From Figures 3 and 5, we observe that as the training set size
increases, the performance becomes increasingly better for both PLM and ALM. We also observe
that SBLM is most the frugal in terms of data requirements and achieves the lowest errors for a
given training set size. This is expected, as SBLM suitably fits the data by properly learning the
edge weights along with the clusters the nodes belong to. For political topics (Tw:Politics), the
improvement rate is very high; in other words, the performance becomes better w.r.t. training-
size variation. This is because in political discussion, we observe a good dynamical flow in opin-
ion diffusion, and consequently the predictive performance increases with a higher training size.
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Fig. 3. Performance variation in terms of NRMSE with training size. As the training set increases, the per-

formance of all algorithms becomes better. SBLM is observed to be the most stable model among all. Due to

a smaller number of parameters, SBLM can be trained with fewer training samples than what is necessary

for training other paradigms.

Fig. 4. Two real-life examples of opinion flow in a subgraph with three nodes. Panel (a) shows a subgraph

structure with three nodes where C follows A and B. Panels (b) (Tw:Politics) and (c) (Tw:Series) show two

examples taken from real data that depict how opinions ofA, B, andC evolve over time. We observe that the

opinion ofC changes as a nonconvex combination of those ofA and B. These examples motivate the necessity

of a possible departure from the DeGroot model, which assumes the row stochasticity of the underlying

weighted adjacency matrix.

Furthermore, the distribution of opinion in messages drastically changes from before to after the
election. As a result, the learned edge influences are not so accurate while training on a smaller
portion of data. As the sample size increases, the training becomes more and more robust and
the predictive performance improves. However, we find that for all other datasets, performance
variation across training size is mostly stable.

8.2.4 Effect of Mesoscaling. To understand the effect of mesoscaled data acquisition, we first
construct communities over the social network using the method described in Dhillon et al. [25].
This algorithm allows setting of the number of communities a priori, thus helping in further
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Fig. 5. Performance variation in terms of quantized error with the training size. As the training set increases,

the performance of all algorithms becomes better. We observe that all algorithms show more or less stable

performances with variation in training size. This is because the variability of polarity is far less than that

of actual opinion. Consequently, all algorithms can be trained with a smaller number of samples, and the

performance stabilizes after a certain training size.

analysis. In addition, communities obtained using this method contain crucial signals in social
network scenarios [17, 18]. In the existing datasets, we averaged these opinions over communities
to obtain the community-level sentiments. Then, we trained our model by using Equation (14) over
various training-set sizes and numbers of communities. Figures 6 through 9 report the results for
the effect of mesoscaling on the overall performance.

8.2.5 Overall Performance Variation. As the number of communities increases, the overall per-
formance in terms of Comm-NRMSE gets better (Figures 6 and 7). This is expected, because as
the number of communities increases, the model becomes more expressive and is able to capture
the granular signals. Reddit shows an irregular pattern in its performance, since the communities
are formed arbitrarily due to threshold-based artificial graph construction. We also observe that
when the number of specified communities is small, we do not observe much variation of perfor-
mance with training size, as the community-level averaged opinions have similar distribution as
time grows.

8.2.6 Performance Improvement Due to Mesoscaling. To establish the utility of mesoscaling, we
averaged individual NRMSE (derived from SBLM) of all members belonging to a community and
obtained corresponding Comm-NRMSE and then compared it to Comm-NRMSE derived through
mesoscaling. The value of ΔNRMSE (Figure 8) is positive for most communities, which firmly es-
tablishes the need for considering community-level opinions that are smoother and hence less
noisy. An interesting observation brought out by Figures 8 and 9 is that the performance improves
initially as the number of communities grow and then decrease. This trend is clearly observed
in the three datasets: Tw:Series, Tw:Boxing, and Tw:Bollywood. It is indicative toward an opti-
mal granularity of opinion sensing for the topic and the network. For large community sizes, the
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Fig. 6. Effect of mesoscaling. Actual opinion prediction performance (NRMSE) of community-level opinions.

As the number of communities increases, the performance becomes better because of the increasing expres-

sive power of the model that enables it to capture more and more granular signals.

community-level opinions are overcompressed, leading to underfitting of the edge weight matrix
A. However, extreme granular sensing inflicts more noise, leading to overfitting of A.

The improvement of quantized error (second row of Figure 9) follows a similar trend, only it
deteriorates faster especially in those scenarios where there is presence of a lot of mild opinions
and some dominating opinions. In general, it is a hard task to predict the polarity of users with
mild opinions, and that is reflected in the poor improvement factor for all variants of our proposal.

8.2.7 Opinion Model with Node Classification. In the last section, we found that the mesoscal-
ing policy is useful in terms of the predictive power of the community-level signals. However,
such community construction was based on edge clustering. No node properties were taken into
account. Here, we investigate the impact of community construction based on node properties. In
Table 4, we report the improvement factors for different edge distribution and training sizes across
all datasets collected from Twitter. We observe a similar trend for Reddit.

In most cases, the overall performance of SBLM strategy is substantially better than its individ-
ual edge-weighting counterpart. This is because, in practice, the interaction between two users
mostly depends on the nature/personalities of them. Therefore, the redundancy injected for ex-
haustive edge set learning is reduced after incorporating the node properties into edge modeling.
In other words, an individual edge-weighting method often leads to the overfitting of the model.
By curating an edge influence as a function of node attributes, we reduce the number of parameters
from O ( |E |) to O ( |V |), which in turn decreases the overfitting tendency.

Table 4 dissects the variation of performance of SBLM w.r.t. the prespecified number of clusters
(C). We clearly observe that a normal distribution fares reasonably better than all other distribu-
tions in the case of Politics, Movie, Series, and Bollywood. Table 4 shows that for C = 7, normal
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Fig. 7. Effect of mesoscaling. Opinion-polarity prediction performance (quantized error) of community-level

opinions. As the number of communities increases, the performance becomes better.

Fig. 8. Variation of performance improvement (in terms of RMSE) due to mesoscaling, with the number

of communities and the training set size. As the number of communities increases, the improvement first

increases and then decreases, suggesting an optimum level of compression that gives the best improvement.
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Fig. 9. Variation of performance improvement (in terms of quantization error) due to mesoscaling, with the

number of communities and the training set size. As the number of communities increases, the improve-

ment first increases and then decreases, suggesting an optimum level of compression that gives the best

improvement.

Table 4. Improvement Factor (in %) After Node Classification Given That Edge

Weight Distributions are Normal, Exponential, and Pareto

80% Sampling 60% Sampling

Normal

Dataset Politics Movie Series Boxing Bollywood Politics Movie Series Boxing Bollywood

C = 4 6.0798 –15.1877 –15.9886 –14.4286 –46.3089 9.5455 –13.4338 –14.7631 –13.7680 –45.7740

C = 7 7.0634 3.5591 2.2852 2.8453 1.0575 10.5291 5.3129 3.5108 3.5060 1.5924

C = 10 7.0529 3.6077 2.2342 2.4405 0.7474 10.5186 5.3615 3.4598 3.1011 1.2822

Exponential

C = 4 6.0875 –16.4734 –14.8890 –14.5828 –46.1079 9.5532 –14.7196 –13.6634 –13.9221 –45.5730

C = 7 6.0989 –11.7864 –13.4794 –13.5742 –43.1158 9.5646 –10.0325 –12.2538 –12.9136 –42.5809

C = 10 6.0954 –10.1287 –12.7022 –13.0462 –37.1227 9.5611 –8.3748 –11.4767 –12.3855 –36.5878

Pareto

C = 4 5.8104 –40.5357 –32.0964 3.0884 –61.3375 9.2761 –38.7819 –30.8709 3.7490 –60.8027

C = 7 5.7672 –193.2024 –110.6837 2.4414 –168.6266 2.6163 –191.4466 –109.2810 3.1021 –168.0877

C = 10 5.7930 –248.9097 –136.9245 1.7654 –238.5074 1.1124 –247.1539 –135.5218 2.4260 –237.9685
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Fig. 10. Community structures on Twitter datasets, due to co-clustering algorithms on opinion models with

node types. For Tw:Politics and Tw:Movie, we observe that the community structures have higher entropy

than other datasets, which is an indication of strong interactions between the node clusters.

distribution provides a significant performance boost for these four datasets. For example, in
Tw:Politics, the improvement factor is more than 7%. However, in the Tw:Boxing dataset, Pareto
performs best, resulting in a 3% performance improvement. For Tw:Politics, the performance is the
most consistent. It performs well even with a small value of a prespecified number of communities,
which shows the utility of our frugal modeling assumption in general.

The overall better performance of a normal distribution is primarily attributed to the existence
of substantial negative influences between users. This is a major advantage of the proposed model
over the DeGroot model, the closest counterpart of its kind. Hence, a normal distribution reflects
the proper spectrum of the edges as opposed to exponential and Pareto distributions that restrict
the edge weights to be positive. Although Pareto fares quite well in the Tw:Boxing dataset, it fares
very poorly for all other cases.

Quite surprisingly, Table 4 reveals that the relative performance of SBLM is significantly better
for training with 60% samples than with 80% samples. Note that SBLM requires a far less amount
of parameters to be trained, as compared to the per-edge models like ALM and PLM. Therefore,
as the training size decreases, it shows a slower rate of performance degradation. As a result, the
improvement factor becomes high for a smaller training size.

It can be observed that in most of the datasets (Tw:Politics, Tw:Movie, Tw:Boxing, and
Tw:Bollywood), on increasing the number of node classes, the performance first improves and
then deteriorates.5 This is because the choice of a few node clusters may lead to too much com-
pression of important user aspects, which is reflected in a relatively poor performance with C =
4 for all a priori edge distribution. However, increasing the number of clusters appears to overfit
the learned edge weight, which also results in poor predictive power.

Figure 10 depicts the co-clustering structure obtained on learning SBLM for normal distribution
withC = 7. In Tw:Politics and Tw:Movie, we observe that the entropy of the revealed community
structure is higher than other datasets. This indicates an intense intercluster interaction (high B
matrix). To some extent, we believe that this is one of the likely reasons for a high improvement
factor (>7% for C = 7, normal edge distribution) in the Tw:Politics dataset. Moreover, cross inter-
action between classes often indicates overlapping clusters (i.e., mixed membership of a user to
various communities+. This leaves an open space for modeling a mixed-membership stochastic
block model while learning edge influences in the context of opinion dynamics. However, for the
Tw:Series, Tw:Boxing, and Tw:Bollywood datasets with block structures with lower entropy, the
corresponding IF values turn out to be low.

8.2.8 Variation across Datasets. From Table 2, we observe that the algorithms perform substan-
tially better in Reddit than in all Twitter datasets. Note that in the case of Reddit, we have collected
the evolution of general political opinion, whereas in Twitter, we concentrated on specific events.

5This optimal number of node classes is near seven (six to eight) for various datasets.
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Reddit is a forum where people actually join to form an opinion/impression. Therefore, it is nat-
ural that a user in Reddit views others’ post, forms an opinion, and writes a well-thought post.
In addition, since the users are more in exploratory mode, a Reddit user can read and scrutinize
any other people’s comments, which evidently helps her form an opinion. In our model, we have
taken a decent estimate whereby two agents are neighbors if they have subscribed to three com-
mon subreddits, and even then we find that the reach of each agent is a magnitude higher than
that of Twitter.

However, Twitter is a popular social network site, and we are looking into the data of particular
popular events. Considering that the underlying graph structure is sparse, an opinion may take
time to propagate and may get lost in the process [40]. Thus, the effect of a distant node becomes
almost negligible. As well, since the event tracked is popular, much of the information may be com-
ing from (outside) Twitter, and a user’s opinion may get influenced because of that [48]. Therefore,
PLM/ALM, which assume local influence, perform worse in capturing influence dynamics.

9 CONCLUSION

In this article, we presented a family of models for opinion propagation in social networks by esti-
mating edge strengths from the stream of quantitative opinions at the nodes, changing with time.
Our model is based on a simple idea that the opinion of a user changes as a linear combination of the
opinions of her neighbors. Here, the polarities and weights of this linear function reflect the corre-
sponding influence between users. Unlike earlier work, our approach does not favor any particular
asymptotic or steady state behavior; rather, it aims to capture fine-grain transient opinion dynam-
ics. To make our model practically effective, we also consider a wide variety of scenarios involving
intermittent observation of opinions at irregular intervals. We also consider another realistic data
collection scenario, where opinions are acquired over communities rather than polling individual
nodes. Such a setting provides a better predictive performance in community-level opinion predic-
tion. Finally, to offer interpretable and frugal models, we present a variant where edge influence
mainly depends on the corresponding node properties, which in turn are learned using a stochas-
tic block model. Such a regularized form of influence reduces overfitting and further boosts the
predictive power of our model. Extensive experiments over nine real-world datasets show that our
proposal significantly outperforms four state-of-the-art baselines in predicting opinion dynamics
of users both individually (per user level) and collectively (per community level).

Our work opens up many interesting directions for future work. An immediate extension would
be to aim for a nonlinear opinion modeling, which should uncover the complexity of the dynamics
better than its linear counterpart. Further, it would be of interest to remove our assumption that
influence itself is stationary. Specifically, here we assumed that A is constant across time. How-
ever, in the context of transient dynamics, A itself can vary across time. Therefore, a time-varying
adjacency matrix could capture opinion signals at a more granular level. The structure of A often
reveals various properties of the users. Although one way to capture these node properties is ad-
dressed in this article, other approaches, such as Aiello et al.’s model [2], the latent product model,
and so forth, may be useful, and we plan to explore them in the future.
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