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Abstract—Advances in deep neural networks (DNNs) have
shown tremendous promise in the medical domain. However,
the deep learning tools that are helping the domain, can
also be used against it. Given the prevalence of fraud in the
healthcare domain, it is important to consider the adversarial
use of DNNs in manipulating sensitive data that is crucial to
patient healthcare. In this work, we present the design and
implementation of a DNN-based image translation attack
on biomedical imagery. More specifically, we propose Jekyll,
a neural style transfer framework that takes as input a
biomedical image of a patient and translates it to a new
image that indicates an attacker-chosen disease condition.
The potential for fraudulent claims based on such generated
‘fake’ medical images is significant, and we demonstrate
successful attacks on both X-rays and retinal fundus image
modalities. We show that these attacks manage to mis-
lead both medical professionals and algorithmic detection
schemes. Lastly, we also investigate defensive measures based
on machine learning to detect images generated by Jekyll.

1. Introduction

As we make rapid advances in deep learning/AI, it is
important to understand the associated security implica-
tions. Attackers can no longer be assumed to have limited
algorithmic intelligence [1]. An emerging threat is that
of “deepfakes”, or AI generated synthetic content that
appears convincingly real [2]. Deepfakes are enabled by
deep generative models such as Generative Adversarial
Neural Networks (GANs) [3]. Generative models can pro-
duce photorealistic fake images [4], [5], and convincing
fake videos [6]. Recently, the threat of deepfakes has been
largely discussed in the context of the Web, where they
can be used to create fake accounts, fake pornographic
images of celebrities, images of people doing things they
never did to spread misinformation, and manipulate elec-
tions [7]. In this work, we investigate threats posed by
deepfakes in the healthcare domain, i.e. how bad actors
can make use of generative schemes to attack critical
workflows in our healthcare framework.

Healthcare spending is huge in many developed coun-
tries, and the system is already fraught with fraud [8]–[13].
Prior work has highlighted exploitable vulnerabilities in
the healthcare domain. The industry has employed poor
security practices in securing sensitive patient data such
as biomedical images [14]–[16]. In 2019, Mirsky et al.
demonstrated attacks that compromise biomedical data
management pipelines [16]. As our healthcare system is
susceptible to bad actors, it is important to investigate new
threat vectors driven by technological advances.

We propose an attack framework called Jekyll that
leverages generative deep learning to derail one of
the most important decision processes in the medical
domain—medical diagnosis based on biomedical image
analysis. Jekyll is based on a Generative Adversarial Neu-
ral Network (GAN). Our key insight is to use an image-to-
image style transfer approach for our attack. Jekyll takes
as input a biomedical image of a victim, and translates it
to produce a new (fake) image that changes the “style” by
injecting an attacker-chosen disease into the image, while
preserving the “content” or identity of the victim. The
targeted condition does not reflect the real health condition
of the patient. Therefore, the key outcome is to produce a
“deepfake” image that can cause both a human (medical
professional), and an algorithm to misdiagnose the health
condition [17]–[19]. This is because the produced image
shows human-perceptible signs of the targeted condition,
which is also sufficient to mislead automated algorithmic
schemes.

An incorrect diagnosis can lead to potential life-
threatening situations for the patient, unnecessary health-
care costs, and wasted healthcare resources. The attacker
may be motivated by financial gain. For example, a
malicious clinic can trigger misdiagnosis and force an
insurance provider to pay for unnecessary procedures. The
attacker may also be motivated by criminal intent to cause
harm to an individual (or group of individuals), or to dis-
rupt and damage a particular healthcare framework [16],
[20].

A key aspect of Jekyll is the capability to perform
controlled creation of the fake image. Apart from being
able to inject an attacker chosen disease condition, it can
be done while preserving the “identity” of the patient. This
is important because biomedical images are known to con-
tain patterns that are unique to their patients. Preserving
identity makes the attack much harder to detect because
the image will appear to belong to the victim and will not
seem abnormal. To make the attack more damaging, our
tool can also be used during repeat visits by the victim to
inject disease patterns that mimic the natural progression
of the disease.

Attacks using Jekyll are realized by training on pub-
licly available medical image datasets. Our attack only
requires datasets annotated with health conditions and
(anonymized) patient IDs. More importantly, Jekyll only
requires a single image of the victim to generate a mis-
leading fake image.

Key contributions of our work include the following:
(1) We design and implement a GAN-based tool called
Jekyll that can inject an attacker chosen disease condition
into a victim’s image, while preserving their identity.



(2) We demonstrate the feasibility of the attack on two
popular biomedical image modalities—X-rays and retinal
fundus images. Using publicly available medical datasets,
Jekyll is used to inject Cardiomegaly, and Pleural Effusion
health conditions into chest X-rays of healthy patients. For
retinal images, we demonstrate injection of the Diabetic
Retinopathy condition.
(3) We show that attacks powered byJekyll can be sus-
tained over time. As patients make repeat visits to a
hospital, Jekyll can be used to inject disease conditions
that match the expected progression of a disease.
(4) The effectiveness of attacks byJekyll is evaluated by
both (a) machine learning algorithms and image quality
metrics, and (b) medical professionals. Our user study
shows that medical professionals are convinced of the
presence of targeted disease conditions in the fake images,
and that they are unable to distinguish between real and
fake images.
(5) Finally, we explore defensive schemes. We investi-
gate two machine learning-based detection schemes: (1)
Blind detection: assumes no access to fake images, and
no knowledge of attacker's model for training, and (2)
Supervised detection: assumes access to both real and fake
images for training. We show that supervised detection
schemes are highly effective, but also vulnerable to eva-
sion schemes that modifyJekyll to bypass detection.

2. Background and Related Work

Problem motivation. Healthcare spending is huge in
many developed countries. In 2017, the US spent 17%
of its GDP on healthcare [21]. Not surprisingly, given
the money involved, the healthcare system is already
fraught with fraud [8]–[13]. Different entities/actors in
the system—medical institutions (large hospitals as well
as small clinics), medical practitioners (e.g., physicians,
radiologists), health insurers, all have an incentive to
engage in fraud and bene�t �nancially [8]. For example,
a clinic can bill patients for unnecessary procedures or
medication [22]. On one hand, hospitals are known to
in�ate the cost of medical care to overcharge patients,
while on the other, insurers have an incentive to reduce
payout [23], [24]. The attacker may also be motivated
by a criminal intent to cause harm to an individual (or
group of individuals), or to disrupt and damage a particular
healthcare framework [20]. Overall, security practices im-
plemented in healthcare systems are lacking, making them
vulnerable to attacks that compromise the availability and
integrity of medical data [14], [15]. These trends motivate
us to explore potential threats by malicious actors that
leverage technological advances in machine learning to
engage in hard-to-detect medical fraud.
Biomedical images. Medical imaging is a crucial com-
ponent of any health care framework. Biomedical im-
ages taken using specialized instruments capture interior
anatomical structures of a human body. By analyzing
these images, medical practitioners can monitor diseases
and prepare treatment plans, often without requiring any
invasive procedures [25]. To demonstrate our attack, we
focus on two widely used image modalities, X-rays, and
retinal fundus images. X-ray images are widely used to
assess a range of injuries (e.g., damaged bones), and
health conditions such as heart disease, breast cancer, and

collapsed lungs. Fundus photography helps to capture an
image of the back of the eye. Fundus photographs of the
retina [26] are used by ophthalmologists to detect Diabetic
Retinopathy, a condition that could lead to vision loss in
patients with diabetic mellitus [26].

Attacks proposed in this work, while demonstrated
on X-ray and retinal fundus imagery, are theoretically
applicable to other 2D image modalities,e.g.,Ultrasound,
and 2D MRI scans [25]. In Section 3.1, we also explain
potential application to 3D modalities. Also, unlike other
images, biomedical images are usually highly standardized
in terms of anatomical position and exposure [27]. This
makes it easier to learn patterns in anatomical structures
and makes them more vulnerable to attacks discussed in
this work.
Adoption of ML for healthcare decisions. Given the
availability of large medical image datasets, and advances
in deep learning, it is expected that algorithms will play a
signi�cant role in aiding healthcare decisions [26]. Deep
learning schemes that analyze medical images can help
doctors spot health conditions that may be otherwise hard
to identify even by a trained professional [17]. Insurance
providers may also leverage algorithms to automate veri-
�cation of diagnoses, before making reimbursements [8].
Recently, the community has seen rapid advances in al-
gorithmic decision making for medical imaging tasks that
even surpass human performance. Recently, the U.S. Food
and Drug Administration approved an AI algorithm to
screen chest X-rays for collapsed lung (or Pneumoth-
orax) [28]. In fact, AI-based systems are already be-
ing tested/deployed to assess diabetic blindness [29], de-
tect chromosomal abnormalities [30], and pancreatic can-
cer [31]. Recent examples also include ML schemes that
perform well on breast cancer detection [32], skin cancer
classi�cation [33], arrhythmia detection [34], hemorrhage
identi�cation [35], and diabetic retinopathy detection [36].

Hence, a successful attack that aims to mislead any
medical decision process, should also fool an ML scheme
designed for the same decision process. Otherwise, even if
it can mislead a medical professional, it could be thwarted
by an ML scheme.
Jekyll vs attacks using adversarial samples. Given
an input image, one can add carefully crafted adversarial
perturbations that are imperceptible to humans, such that
the perturbed input triggers misclassi�cation when fed to a
model [37]. Therefore, one approach to mislead ML-based
diagnostics tools is to craft adversarial samples of biomed-
ical images—given a chest X-ray of a healthy patient, craft
an adversarial input that fools the ML model to predict a
disease condition [8]. However, today, medical images still
undergo visual examination by professionals—radiologists
can identify that an adversarial X-ray image (targeting a
disease condition) still looks healthy, thus rendering the
attack ineffective.Hence, we propose attacks that produce
images containing visually perceptible changes that can
mislead both a human (more importantly, a medical pro-
fessional) and an ML model.
Prior work on misuse of ML/AI. Most prior work
at the intersection of ML and security primarily focused
on attacks against ML systems [38]. But, recently, there is
emerging interest in understanding new attacks enabled by
ML/AI [1]. In the non-medical space, research has demon-



strated AI techniques to break CAPTCHA systems [39],
generate convincing fake reviews [40]–[42] and email con-
tent [43], control voice assistants (e.g., Google Assistant,
Alexa) [44], [45], extract private information from collab-
orative learning systems [46], attack anonymity systems
(Tor) [47], [48], and to automate DoS attacks via trace
synthesis [49].

In the medical domain, there is limited work on un-
derstanding threats posed by AI. Kohli et al. proposed an
Iris presentation attack using a DCGAN [50]. Their attack
speci�cally focused on Iris biometric systems and is not
generally applicable. In more closely related concurrent
work from 2019, Mirsky et al. proposed CT-GAN [16],
a framework that uses deep learning to tamper with 3D
medical imagery (CT images) to add or remove signs of
medical conditions. Compared to both these works, we
propose a generic attack that is applicable to multiple
diseases, multiple modalities (X-ray, retinal fundus), and
requires signi�cantly less effort from the attacker to suc-
cessfully mislead diagnostic processes. We discuss CT-
GAN in more detail in Section 3.1.

3. Attacking Medical Diagnostics

3.1. Threat Model and Overview of Approach

Threat Model. The victim, a patient, visits a medical
imaging lab, and obtains a biomedical image of some
type, e.g.,X-ray, retinal Fundus. Unknown to the victim,
the attacker obtains access to the victim's image, and
“translates” it to a version with an attacker-chosen disease
condition (that does not re�ect the actual health situation
of the victim). After translation, the original image is
removed from the system by the attacker and is not seen
by anyone else. For example, given an X-ray of a healthy
patient, the attacker generates a new image indicating an
abnormal heart condition when examined by either a med-
ical professional or a machine learning algorithm. Figure 1
illustrates the attack scenario. It is important to note that
medical professionals will analyze the image for presence
of any diseases. As the generated image is examined by
a professional, traditional adversarial sample attacks, or
nä�ve attacks that tamper with the diagnostic end-results
are ineffective. We make the following assumptions:

First, the attacker can access and alter victim's medical
images by compromising medical information systems.
Medical images are typically managed through a Picture
Archiving and Communication System (PACS) [51]. The
attacker can either access the data-at-rest,e.g., when it
is stored on a PACS server, or when data-is-in-motion,
e.g., by intercepting network traf�c or by reading from
volatile memory. Real world deployments of PACS are
known to follow poor security practices,e.g.,miscon�gu-
rations, using default credentials, easy access by insiders,
rare security patch updates, and lack of encryption sup-
port [14], [15]. These �aws cause the PACS systems to
be highly vulnerable to social engineering and physical
insider attacks, thereby violating data integrity. In fact,
Mirsky et al. [16] demonstrated a successful pen-test using
a Raspberry Pi that was able to compromise a hospital's
PACS framework, making it feasible to intercept scans
and credentials of staff members in plaintext, and install
a malware that allowed for aman-in-the-middleattack.

Figure 1. Overview of attack scenario.

PACS servers are also exposed to and thus accessible via
the internet [51]. This exposure ampli�es the susceptibility
to attacks via web portals [14].

Second,the attacker can leverage publicly available
medical image datasets to build ML models for the at-
tack. There are large datasets covering different image
modalities, e.g., X-ray [52], retinal fundus images [26],
MRI [53], CT [54], [55], and PET [53]. The attack re-
quires annotations that capture anonymized patient IDs,
health conditions,i.e. whether patient is healthy or has
some disease(s), and any available characteristics such as
the stage or severity of the condition.Note that the attack
does not require any disease segmentation masks for these
images, e.g., a marked portion of the image that shows an
area affected by disease.

Third, the attacker has no access to any previous
medical images of the victims. The attack only requires a
single image from the victim, which can be accessed after
the patient undergoes a medical imaging procedure.

Lastly, no knowledge is assumed regarding how the
image is analyzed by the entity responsible for the vic-
tim's healthcare. Images could be analyzed by a medical
professional or a machine learning algorithm (or both).
Also, we do not assume any query access to the machine
learning algorithm evaluating the victim's health condi-
tion. Such an access is not required in our attack because
the attack visibly injects the targeted disease in the image,
unlike traditional adversarial inputs where imperceptible
adversarial noise is added to fool classi�ers [56].
Attack goals. Three main goals include the following:
1. Translate a biomedical image to a new one that indi-
cates an attacker chosen health condition.The targeted
condition does not re�ect the real health condition of the
patient. In the rest of the paper, we use the phrase “dis-
ease injection” to refer to this image translation process,
and the generated image is called thefake image. While
we primarily focus on injecting a disease condition, our
methods can also be used to translate an image with a
disease condition to one that appears healthy.
2. Inject disease while preserving identity of the victim.
For a successful attack, one must not only inject the
disease, but must also ensure that the fake image re�ects
the “identity” of the victim. Biomedical images typically
contain patterns that are unique to their owners, and such
personal signatures can be used to verify the identity of
the owners [57]. This applies to modalities such as X-
rays, and retinal images that carry unique signatures of
the patients. If the attacker used a diseased X-ray from
another patient or generated a chest X-ray image that fails
to preserve the anatomical characteristics of the victim,
the image could be �agged by an identity veri�cation
algorithm, or by a doctor on visual examination. In such
cases, the doctor or algorithm can compare the generated



image against previously submitted images of the patient
to verify the identity, thus rendering the attack ineffective.
3. Sustaining the attack over time.Patients typically un-
dergo repeated examinations to follow up on a health
condition. This provides an opportunity for the attacker to
continue to manipulate the system. To enable subsequent
attacks, the attacker would need to control the disease
injection process to re�ect the natural progression of a
health condition. Otherwise, there is a risk of raising
suspicion and being caught. Such repeated attacks can be
devastating for the patient and lead to wasted resources in
the health-care system. For this goal, we propose methods
to sustain the attack over time.
Comparison to CT-GAN [16]. The only closely related
work is CT-GAN, a deep-learning framework for 3D
medical image tampering. The key differences between
Jekyll and CT-GAN are as follows:(1) Practicality and
ef�ciency. To inject a chosen disease condition, CT-GAN
requires at least 14 complex steps, including extensive
pre-processing steps, identifying the region for disease
injection, and multiple manual touch-ups to make the
tampered region look realistic.Jekyll is more ef�cient
to use, as it only requires the single translation step of
passing the image through the generator.Jekyll is also
more practical for a generalized bad actor, as it requires no
knowledge of medically viable regions for disease injec-
tion. (2) Generalization to non-localized conditions.CT-
GAN uses an “in-painting” scheme to inject a disease into
a speci�c image region. However, this not only requires
that the chosen region be a medically viable location for
the disease, but also requires the disease to be localized in
the said region.Jekyll, on the other hand, learns to inject
the disease as a whole into the image. This enables in-
jection of diseases that are spread unevenly over multiple
anatomical regionse.g.,injecting diabetic retinopathy into
retinal fundus images. It is unclear if CT-GAN can work
with such modalities.(3) Image Dimensionality.CT-GAN
is intended for use with 3D medical image modalitiese.g.,
CT scans. Disease injection is performed by extracting
a 2D image slice from the middle of 3D DICOM im-
agery for the CT scan, applying the in-painting technique,
and re-inserting the modi�ed slice.Jekyll performance is
demonstrated on 2D medical imagery but can potentially
be extended to 3D modalities by performing single-step
translation on a similarly extracted middle slice. Overall,
Jekyll and CT-GAN demonstrate new threats facing our
healthcare system.

3.2. Attack Methodology
We use a Generative Adversarial Network (GAN) [3] for
the attack. A GAN has two primary components, agener-
ator and adiscriminator that are trained in an adversarial
process. Given a dataset of images, the generator learns to
generate synthetic images that mimic the distribution of
the dataset. The discriminator learns to decide whether an
image produced by the generator looks real (i.e., belongs
to the true data distribution) or fake. The two components
are trained using a minimax objective where the generator
aims to produce fake images that are indistinguishable
from real images, while the discriminator aims to rightly
distinguish between real and fake images. GAN variants
have shown impressive results for high quality image
generation tasks [4], [5], [58].

Prior work using GANs in the medical domain mainly
focused on non-adversarial scenarios,e.g., for data aug-
mentation [59]–[62], de-identi�cation [50], anomaly de-
tection in data [63], feature extraction [64], [65], and
image segmentation [66]–[71]. Our goal is not to pro-
pose a new GAN model to advance the state-of-the-art
in biomedical image generation. Instead, we show how
a GAN-based approach can be used to launch attacks
against medical diagnostics.

While many GANs have been proposed, not all of
them are suitable for the attack. In a vanilla GAN, the
generator takes as input a noise vectorz drawn from some
distribution pz (z) (e.g., normal distribution) to generate
an image, while the discriminator provides feedback to
improve the generation process. Different input vectors
will produce different images, but in general it is hard
to reverse engineer how the noise space maps to speci�c
semantic properties of generated images, e.g., to represent
a disease or identity of a patient. Therefore, this does
not �t our scenario—havingonly a latent vector as input
makes it hard tocontrol the generation process. Another
challenge is that the attacker only has a single image of
the victim. This rules out approaches that train a GAN on
past images of the victim to generate identity preserving
images. Instead, we propose to learn from medical images
of other patients (publicly available data) for the attack.
Jekyll: Our attack framework. In this section, we
presentJekyll, a GAN-based image style transfer model
for attacking medical diagnostics. A style transfer GAN
that takes an input image as acondition, and “translates”
it to a version that preserves thecontent, while changing
the style [72]. In our context, content includes image
characteristics that capture identity of the patient, while
style captures the health condition of the victim. Note that
using an image as input provides more control over the
generation process, compared to a vanilla GAN.

One challenge is that an image-to-image translation
GAN requires paired input-output data. For example,
Pix2Pix GAN [72] learns from paired data to transfer
style. In our setting, this would require a pair of images
belonging to each patient, i.e., one with no disease, and
the other with a disease. Such paired data is usually not
publicly available and can be challenging for the attacker
to obtain. Instead, we propose to do style transfer from
unpaired collections of images, e.g., a set of images of
arbitrary patients with no disease, and another set with a
disease (again an arbitrary set of patients). The recently
proposed CycleGAN [73] best �ts this scenario, and we
propose to build on top of this approach.A key advan-
tage of our approach is that we will automatically learn
characteristics of the disease (style), and identity (content)
from the image collections, without requiring any human
intervention or image segmentation masks (that highlight
regions indicative of disease or those that capture identity
of a patient). This enables a single-step disease injection
attack, unlike prior work (CT-GAN).
Jekyll design. Let X be the domain of images having
health conditionCX , and Y be the domain of images
diagnosed with another conditionCY . Training samples
in X are f x i g

N
i =1 , and in Y are f yi g

M
i =1 . Our goal is to

translate images fromX to Y , i.e. inject a new disease
condition while preserving the identity of the patient.



Without loss of generality we consider the victim to be
a healthy person. We consider health conditionCX to
denote a healthy condition, i.e., with no disease, andCY
to denote asinglereal disease.Jekyll can also be used for
disease removal, in which caseCX would include patients
with a disease, andCY will be healthy patients.

An optimal image translator can translate images in
X to ones that match the distribution of images inY .
But because of the unpaired data setting, there are in�nite
possible mappings fromX to Y , and we want to produce
a speci�c mapping—one that preserves the identity, while
injecting a disease. We will later explain that this will
require the use of two generators, and two discriminators
to enable transfer from one domain to the other. One
generator,G : X ! Y , transfers images fromX to Y , and
another generatorF : Y ! X transfers images fromY to
X . One discriminatorDY tries to distinguish real images
in Y from images generated byG, another discriminator
DX tries to distinguish real images inX from images
generated byF . Below, we explain howJekyll enables
style transfer for the attack.Jekyll is trained to optimize an
objective function that includes the following loss terms.

Adversarial process.This part captures the basicad-
versarial lossfor the GAN. A generator produces images
that fall in a certain domain, and the discriminator tries
to differentiate between generated and real images. We
use a least-squares GAN loss [73] for our adversarial loss
to stabilize training and to improve image quality. It is
computed as:

L GAN (G; DY ; X; Y ) = Ey � pdata ( y ) [DY (y)2]

+ Ex � pdata ( x ) [(DY (G(x)) � 1)2]
(1)

We use a similar adversarial loss function for the re-
verse direction,F : Y ! X using the discriminator
DX . The �nal adversarial loss is as follows:L adv =
L GAN (G; DY ; X; Y ) + L GAN (F; D X ; X; Y ). The two
generators try to minimize this objective, while the two
discriminators try to maximize it.

Disease Injection.In theory, the adversarial loss
should be suf�cient to inject a disease. However, we
empirically observe that this is not the case. Disease char-
acteristics in biomedical images can be subtle, e.g., small
change in heart shape in a Chest X-ray, minor changes
in a retinal vascular pattern. It is simple for the GAN
to trivialize the style differences and simply replicate the
input image. Thus, we incorporate an additionaldisease
loss term to enforce disease injection.

A pre-trained disease classi�erS is used to calculate
the disease loss and provide additional feedback to the
generator. Generated images fromG are fed intoS to ob-
tain a prediction probabilityS(G(x)jCY ) for belonging to
disease conditionCY . If G(x) receives a high prediction
probability to be in classCY , we add a small penalty,
and a high penalty if the prediction probability is low.
This pushesJekyll to correctly inject the targeted disease
condition. We de�ne

L disease = Ex � pdata ( x ) [l (S(G(x)jCY ); CY )] (2)

where l is a cross entropy function.
Preserving identity.As these are unpaired images, the

adversarial loss term can map one image inX to any

random point in domainY . This is not desirable, because
we want to �nd a mapping that preserves identity. To
reduce the space of possible mappings inY , we draw on
work from CycleGAN and apply acycle consistency loss
to the GAN. Put simply, an imagex when translated to
Y and reconstructed back to domainX should be mostly
similar to the originalx, i.e., F (G(x)) � x. Similarly,
there is a reverse cycle loss for translations fromY to X
as well. The cycle loss is computed as:

L cycle = Ex � pdata ( x ) [kF (G(x)) � xk1]

+ Ey � pdata ( y ) [kG(F (y)) � yk1]
(3)

While we expect the cycle loss to �nd mappings to the
other domain that are easier to reconstruct, it still lacks a
concrete notion of identity. This is because the cycle loss
formulation does not explicitly characterize what de�nes
the identity of the patient. We argue that cycle loss is
not suf�cient to preserve identity all the time. To better
preserve identity, we propose an additionalidentity loss
term de�ned as perceptual loss given by

L identity = Ex 2 pdata (x ) [kE(x) � E (G(x))k1

+ kE(F (G(x))) � E (G(x))k1)]
(4)

whereE(:) represents features extracted from a speci�c
layer in a pre-trained identity classi�er. Recall that attacker
has a single image of the victim, so it is hard to train
an identity classi�er that includes all victims.Using a
perceptual loss as opposed to a classi�cation loss (as
in the disease loss term) helps to overcome this issue.
Perceptual loss allows us to use an identity classi�er
trained on any available set of patients because we only
use features from an internal layer.

Finally, the overall loss is computed as:

L(G; F; D X ; DY ) = � adv L adv + � disease L disease

+ � identity L identity + � cycle L cycle
(5)

and the associated weight terms control the extent to
which each property is enforced.

Sustaining the attack over time.Ideally, when victims
undergo repeated examinations, disease injections should
match the expected progression of a disease,e.g.,disease
becoming severe over time. We present two ways in which
Jekyll can be used to enable such repeated attacks:
(1) Attacker can use publicly available datasets that cap-
ture different stages of the disease in question, and create
multipleJekyllmodels, each one trained to inject a speci�c
stage of the disease into the patient's image. In fact,
such datasets exist—we use a dataset of retinal fundus
images to inject different stages of Diabetic Retinopathy
(Section 5.1.4).
(2) If there is no data capturing progression of a disease,
then we propose a simple alternative solution. Given a
dataset capturing a certain (late) stage of a disease, and
a healthy stage, attacker can inject intermediate stages
of the disease using simplelinear interpolationover the
available images. More speci�cally, the attacker will train
a singleJekyll model to translate a non-disease image to
a disease stage (for which data is available). Next, given
a non-disease imageI nd belonging to a victim, and a
disease injected image,I d produced byJekyll, attacker can
use linear interpolation to approximate intermediate stages



(represented byI f ) of the targeted disease as follows:
I f = � � I d + (1 � � ) � I nd . Here � represents the degree
of disease injection. Such injection is possible because
Jekyll produces output images that are perfectly aligned
with input images. In Section 5.1.4, we show how one can
produce convincing attack images capturing intermediate
stages of Cardiomegaly (heart condition) using this ap-
proach. However, we acknowledge that such interpolation
schemes may not be meaningful for all disease conditions.
Jekyll model architecture. Generator and Discrimi-
nator. Architecture for both generator and discriminator
is inspired by CycleGAN [73], and we build on top of
a publicly available implementation from GitHub [74].
Input and output image resolutions of the generator are
256� 256. Discriminator is based on a70 � 70 Patch-
GAN [72], that decides whether70 � 70 overlapping
image patches are real or fake, resulting in a32� 32� 1
dimensional output. This has been shown to outperform a
discriminator that evaluates the entire image to determine
whether it is real or fake. More details of the generator and
discriminator architecture are in Table 12 in Appendix C.
Note thatJekyll can be adapted to produce higher resolu-
tion images by borrowing architectural elements from PG-
GAN [4]. PGGAN can produce high resolution images by
starting from a low resolution version, and progressively
increasing the size (layers) of the network.

Disease and Identity Classi�ers.Recall that Jekyll
requires pre-trained disease and identity classi�ers to pre-
serve identity while injecting disease. We use the same
architecture for both classi�ers, but they are trained dif-
ferently depending on the dataset.1 Disease classi�er is
a binary classi�er predicting condition as non-disease
and the targeted disease. Identity classi�er is a multi-
class classi�er predicting the identity of a person. Both
classi�ers use the DenseNet-121 model architecture [75].
For both models, we replace the last classi�cation layer
of DenseNet-121 with a dense layer of 256 neurons,
a dropout layer with rate of 0.5, followed by a �nal
classi�cation layer (that �ts our task). To compute the
identity loss, we extract the output of the convolution layer
before the last dense block in DenseNet-121. More details
of Jekyll's architecture are in Appendix C.
Alternative architectures for Jekyll. Our techniques
behindJekyll (to inject disease and preserve identity) can
be applied to other image-to-image translation GANs as
well. In Section 5.1.5, we investigate attack effectiveness
when using alternate architectures. We explain two other
architectures below.

StarGAN.StarGAN is an image-to-image translation
model that improves over CycleGAN [76] by providing
many-to-many domain translation capabilities. Unlike Cy-
cleGAN, StarGAN only requires a single generator and
discriminator, but leverages an auxiliary domain classi�er
to ensure successful domain translation. StarGAN also
includes a cycle loss term similar to CycleGAN to pre-
serve content. We adapt StarGAN to �t into ourJekyll
framework by adding a disease and identity loss term. To
compute disease loss, we use the auxiliary domain classi-
�er available in StarGAN, but use an external classi�er for
identity loss. Additionally, we observed that StarGAN's
auxiliary classi�er suffers signi�cantly when classes are

1. This is because we use different types of transfer learning schemes.

imbalanced. To deal with such imbalance, we upsampled
the underrepresented class, and replaced the binary-cross
entropy loss used for the domain classi�cation with focal
loss [77]. More details are in Appendix C.

IPCGAN. Identity Preserving Conditional GAN or
IPCGAN is an image translation GAN to synthesize face
images in a targeted age group, while preserving identity,
e.g., translate a teenager's face image to one that looks
50+, while preserving identity. To achieve this, IPCGAN
uses an age classi�er to enforce translation to the new
age group and implements identity loss as perceptual loss.
However, IPCGAN lacks any kind of reconstruction/cycle
loss, as used inJekyll. To �t IPCGAN into Jekyll frame-
work, we replace the age classi�er by a disease classi�er,
and use our patient identity classi�er. We do not add a
cycle loss term to its training objective. More details are
in Appendix C.

4. Experimental Setup for Evaluating Attack

To build Jekyll, we need to �rst train the disease and
identity classi�ers, followed by the GAN component (that
uses the pre-trained disease and identity classi�ers). We
build two versions of each of the disease and identity
classi�ers. One version of classi�ers are used to train the
Jekyll, and are called the attack disease (Cd

a ) and identity
(C i

a) classi�ers. The other version of classi�ers are used
to evaluate the success of the attack, and are called the
evaluation disease (Cd

e ) and identity classi�ers (C i
e). Given

images translated byJekyll, the evaluation classi�ers help
in answering the following questions. (1)Did we success-
fully inject the disease?(2) Did we preserve the identity?
We ensure that attack and evaluation classi�ers are trained
on datasets with no patient overlap.

For all attacks, we start with a victim set of healthy
patients (i.e., having no diseases), and evaluate attack
success by injecting different diseases (or different stages
of same disease).

4.1. Medical Datasets

NIH chest X-ray dataset [52].2 This is a publicly
available dataset of 112,120 frontal chest X-ray images
of 30,805 unique patients. Images are annotated with
anonymized patient IDs, with labels indicating presence
of one or more of 14 diseases. We demonstrate disease
injection for two of these diseases, namelyCardiomegaly,
and Pleural Effusion. Cardiomegaly causes an enlarged
heart, usually the result of heart disease. Pleural Effusion
is a condition that causes buildup of excess �uid around
the lungs. These conditions are chosen because prior work
demonstrated high detection accuracy for both using deep
learning [17].

We partition the dataset by patients into two subsets.
One partition is used for trainingJekyll, including the
GAN component, and the two attack classi�ers (Cd

a , and
C i

a). The second partition is used only for evaluation
which includes the victim set, and data for training the
evaluation classi�ers (Cd

e and C i
e). The attack partition

contains 24,000 patients, and the evaluation partition has
6,805 patients. Partitioning was performed in a manner
that allows us to build reliable evaluation classi�ers,e.g.,

2. https://nihcc:app:box:com/v/ChestXray-NIHCC



TABLE 1. # IMAGES USED TO TRAIN AND EVALUATE Jekyll.

Datasets
# Train images

# Victim images
Disease Non-disease

Cardiomegaly 35,352 1,349 6,235
Effusion 35,352 4,977 6,883
Severe DR 32,728 1,000 680
Proliferative DR 32,728 982 703

victim set should be large, and include patients with
at least 10 images, so we could build a high quality
identity classi�er for evaluation (C i

e). More details of data
preparation are available in Appendix C.

The statistics of the data used to train and evaluate
Jekyll are shown in Table 1 (see rows for Cardiomegaly
and Effusion). Once trained,Jekyll is tested on over 6,000
victim images for both disease conditions. We also make
sure that the victim set only includes patients with non-
disease images (which can be then injected with a dis-
ease). Victim set includes images that correctly pass the
disease classi�cation test byCd

e (as non-disease), and the
identity classi�cation test byC i

e (as having the correct
identity). This ensures that any effected style transfer is
due to the success ofJekyll, and not due to misclassi-
�cations by the evaluation classi�ers. Details of dataset
(from attack and evaluation partition) used to train the
attack and evaluation classi�ers are in Tables 14 and 15
in Appendix C.
Retinal Fundus images. This is a publicly available
dataset3 provided by EyePACS, a platform for retinopathy
screening. It consists of pairs (left and right eye) of
retinal fundoscopy images for 88,702 patients. Images
are annotated with anonymized patient IDs, with labels
indicating different stages of Diabetic Retinopathy (DR)—
no disease, mild, moderate, severe, and proliferative. DR
is a disease impacting blood vessels in the retina leading
to possible vision loss in people with diabetes. We demon-
strate injection of severe and proliferative DR stages.

We prepare the dataset following a similar methodol-
ogy as used for chest X-rays. Dataset statistics are shown
in Table 1 (see rows for severe and proliferative DR).
For both stages, our victim set includes over 600 images.
Tables 14 and 15 in the Appendix show statistics of data
used for the attack and evaluation (disease and identity)
classi�ers. More details are in Appendix C.

4.2. Training Jekyll, and evaluation classi�ers

All models are implemented using Tensor�ow v1.12.0
framework for Python.4 An NVIDIA Titan Xp GPU with
12GB RAM, on a host with Intel(R) Xeon(R) W-2135
CPU @ 3.70GHz and 64 GB RAM was used for training.
Jekyll. For all experiments, the Adam optimizer is used
with learning rate of 0.0002,� 1 = 0 :5 and � 2 = 0 :999.
The learning rate remains unchanged for the �rst 100
epochs and is then decreased linearly for the next 100
epochs. For each dataset, we empirically determine the
weights for each of the loss terms. Using a validation
set, we empirically estimate weights that produce the
highest quality images, while ensuring successful injection

3. https://www:kaggle:com/c/diabetic-retinopathy-detection/data
4. Only exception is the StarGAN version ofJekyll which is imple-

mented in PyTorch.

TABLE 2. TESTING ACCURACIES OF THE DISEASE AND IDENTITY
CLASSIFIERS USED.

Datasets C d
a C d

e C i
a C i

e

Cardiomegaly 84% 80% 98.2% 96.6%
Effusion 87% 80.7% 98.2% 96.6%
Severe DR 89.9% 90.4% 98.5% 99.9%
Proliferative DR 87% 87.1% 98.5% 99.9%

of disease and identity preservation. Training one instance
of Jekyll takes� 17 hours. Training con�guration for each
dataset and alternative architectures are in Appendix C.
Disease classi�ers. For both datasets (X-ray and reti-
nal), we leverage transfer learning. For the X-ray datasets,
the teacher model is trained on relevant partitions (attack
or evaluation depending on the classi�er) of the NIH
Chest X-ray dataset to diagnose all 14 available diseases
(multi-label classi�er), using the training setup used by
Rajpurkar et al. [17]. To build our X-ray student model,
we initialize our architecture (see earlier Section 3.2)
with weights from the teacher model, and only �ne-tune
the last 70 layers. For the retinal DR disease classi�ers,
the teacher model is a DenseNet-121 architecture trained
on ImageNet [75], and all layers are �ne-tuned during
training. Table 2 shows the accuracies of the (attack and
evaluation) disease classi�ers (Cd

a , andCd
e ) when applied

to balanced test datasets. All classi�ers have fairly high ac-
curacy. Training con�guration is available in Appendix C.
Identity classi�ers. We again leverage transfer learning.
For all datasets, the teacher model is a DenseNet-121
model trained on ImageNet. For each model, weights are
initialized from the teacher model, and all layers are �ne-
tuned during training. The attack identity classi�er,C i

a , is
trained to predict a random subset of patients in theJekyll
training dataset. It is not necessary to train the identity
classi�er on all patients inJekyll training data, as we use
a perceptual loss. For the retinal dataset, we perform data
augmentation for both its training and testing data as we
have limited data (only2 images per patient). Blurring
and random rotations are used to augment the dataset
and create a set of14 (including the original) images
per patient. Table 2 shows the testing accuracies of the
(attack and evaluation) identity classi�ers (on balanced
test datasets). All identity classi�ers achieve over 96%
accuracy. Training con�guration is in Appendix C.

5. Evaluating Effectiveness of Attacks
We structure the evaluation ofJekyll based on our pri-
mary goals. More speci�cally, we aim to demonstrate
that images generated byJekyll show signs of disease
and preserve patient identity. This requires misleading
both real-life medical professional diagnostics,as well as
machine learning classi�ers that are used to aid diagnos-
ticians. Therefore, we perform evaluation by: (1) different
machine learning tools, and image quality metrics, and (2)
by consulting medical professionals.

5.1. Evaluation by Machine Learning Tools and
Image Quality Metrics

In this section, we examine different aspects ofJekyll's
effectiveness and design in detail. This includes evaluat-
ing: (1) image quality, (2) disease injection, (3) identity
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