Scalable Epidemiological Workflows to Support COVID-19 Planning and Response

Dustin Machi*, Parantapa Bhattacharya*, Stefan Hoops*, Jiangzhuo Chen*, Henning Mortveit*, Srinivasan Venkatramanan*, Bryan Lewis*, Mandy Wilson*, Arindam Fadikar‡, Tom Maiden†, Christopher L. Barrett* and Madhav V. Marathe*

* University of Virginia
‡ Argonne National Laboratory
† Pittsburgh Supercomputing Center

IPDPS 2021
The Covid-19 Pandemic

- The most significant epidemic event since the 1918 influenza epidemic
- Over 164 million confirmed cases worldwide
- Over 3.39 million confirmed deaths worldwide
- Estimated economic burden of over 9 trillion US dollars
Supporting Policy Makers

- We have been supporting decision makers March 25, 2020
- We provided weekly forecasts to:
 - Center for Disease Control and Prevention (CDC)
 - US Department of Defense (DoD)
 - Virginia Department of Health (VDH)
 - State Hospital Referral Regions (HRR)
 - University of Virginia
- Answering what if questions
 - Non-pharmaceutical Interventions (NPIs)
 - Mask mandate, school closures, local shutdowns, ...
Contributions and Significance

- A novel high performance computing (HPC) approach for executing epidemiological workflows
 - High resolution agent based models
 - Realistic representation of national scale social contact networks
 - 300 million nodes, 7.9 billion edges, 50 states + Washington DC
 - 5000–17,900 simulations per night
 - County level forecasts for 3140 counties
 - Split across two HPC clusters
We built very detailed Covid-19 disease models utilizing publicly available information from multiple sources.
EpiHiper: A distributed epidemic simulator

- An agent based discrete time simulation model
- Inputs: Disease model + Social contact network
- Provides custom domain specific language for programming NPI scenarios:
 - Voluntary home isolation, school closure, stay-at-home, pulsating shutdowns, partial reopening, custom vaccination schedules ...
- A distributed memory program written in C++/MPI
- Contact network is partitioned onto MPI ranks
- Shared inputs served via PostgreSQL database
Rivanna and Bridges: A multi-cluster setup

- **Rivanna**: Home cluster at University of Virginia
 - 50 nodes (40 CPU cores, 384 GB RAM per node)

- **Bridges**: Remote cluster at Pittsburgh Supercomputing Center
 - Limited access (10pm—8am every night)
 - 720 nodes (28 CPU cores, 128 GB RAM per node)

- Data transfer via Globus

- Both clusters used Slurm for scheduling
A typical timeline of tasks involving human efforts.

Orange boxes are automated.
Combined workflow: End to end timeline

Calibration Phase

Day 0

Data Transferred to Remote Supercluster

County-level Epidemic curves (Raw output: 5-110GB/cell)

Projection and Intervention Analysis

Day 3

Input Data (100MB-8.7GB)

Static Social Network Data (2 TB)

(One Time transfer)

UVA Rivanna Cluster Compute Resources

PSC Bridges Cluster Compute Resources

Summary output: 30-200MB/cell

Input Data (100MB-8.7GB)

Static Social Network Data (2 TB)

(Stored from Calibration)

UVA Rivanna Cluster Compute Resources

PSC Bridges Cluster Compute Resources

Summary output: 30-200MB/cell

UVA Rivanna Cluster Compute Resources

PSC Bridges Cluster Compute Resources

County-level Epidemic curves (Raw output: 5-110GB/cell)
Calibration Workflow

- Ranges for disease parameters
- Latin Hypercube Design
- k model configurations
- Ground truth on day t
- State-specific county-level incidence curves
- Launch population trait databases
- Partition contact networks across distributed processes
- Execute System A model simulations
- Calibration using GP emulator
- Set of k model configurations
- Compute Outcome using System A
- Final set of k model configurations

Work on home cluster

Work on remote supercluster
Prediction Workflow

Final set of k model configurations

Construct various intervention scenarios (including no intervention scenario)

Launch population trait database

Partition contact network across distributed processes

Execute System A simulations

Detailed Transmission Trees from each simulation for all counties for each scenario

Summarization and organization

National County-level daily projections sent to home cluster for further analysis

- Work on home cluster
- Work on remote supercluster
Economic Workflow

1. **Ground truth on day t**
 - Data on disease incidence

2. **State-specific county-level incidence curves**
 - Calibration of disease model
 - NPIs with parameter sweep

3. **EpiHiper configurations of factorial design**
 - Launch 51 databases for 51 states

4. **Partition 51 contact networks across distributed processes**

5. **Execute EpiHiper based experiment with factorial design**

6. **Aggregate individual level simulation output to industry level**

7. **Join aggregate output with synthetic data**

8. **Compute medical costs due to hospitalizations, deaths**

9. **Compute GDP reduction with IO analysis**

10. **Combine to get total impact**

Work on UVA Rivanna Custer

Work on PSC Bridges Cluster
Case Study 1: Medical Costs of Covid-19

Medical costs of keeping the US economy open during COVID-19

Jiangzhuo Chen, Anil Vullikanti, Stefan Hoops, Henning Mortveit, Bryan Lewis, Srinivasan Venkatramanan, Wen You, Stephen Eubank, Madhav Marathe, Chris Barrett & Achla Marathe

Scientific Reports 10, Article number: 18422 (2020) Cite this article

Abstract

We use an individual based model and national level epidemic simulations to estimate the medical costs of keeping the US economy open during COVID-19 pandemic under different counterfactual scenarios. We model an unmitigated scenario and 12 mitigation scenarios which differ in compliance behavior to social distancing strategies and in the duration of the
Scale of Simulations

Large number of simulations are needed to explore the parameter space and to generate confident predictions for decision support purposes.
Workflow Orchestration

• Given:
 – A set of simulations to run
 – A set of compute nodes to run them on

• Objective:
 – Generate job ordering for Slurm
 – Minimize the total run time

• The problem can be mapped to
 – 2D Bin packing problem
 – a variant of the coloring problem (r-relaxed-coloring)

• Heuristics tested
 – First-fit decreasing time with database access constraints (FFDT-DC)
 – Next-fit decreasing time with database access constraints (NFDT-DC)

• Metric
 – System utilization

• Heuristic performance
 – FFDT-DC performs better (96.6% median utilization)
 – NFDT-DC performs worse (55.5% median utilization)
Conclusion

• We developed a novel HPC oriented workflow in order to support planning and response to pandemics such as Covid-19.
 – We used two geographically separated supercomputing facilities
 – Incorporated daily county-level surveillance data and policy data
 – National and high resolution agent-based simulations

• Real-time data driven high resolution epidemics science at national scale is indeed possible.
Thank You!