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Abstract—The COVID-19 global outbreak represents the
most significant epidemic event since the 1918 influenza pan-
demic. Simulations have played a crucial role in supporting
COVID-19 planning and response efforts. Developing scal-
able workflows to provide policymakers quick responses to
important questions pertaining to logistics, resource alloca-
tion, epidemic forecasts and intervention analysis remains a
challenging computational problem. In this work, we present
scalable high performance computing-enabled workflows for
COVID-19 pandemic planning and response. The scalability
of our methodology allows us to run fine-grained simulations
daily, and to generate county-level forecasts and other counter-
factual analysis for each of the 50 states (and DC), 3140 counties
across the USA. Our workflows use a hybrid cloud/cluster
system utilizing a combination of local and remote cluster
computing facilities, and using over 20,000 CPU cores running
for 6–9 hours every day to meet this objective. Our state
(Virginia), state hospital network, our university, the DOD and
the CDC use our models to guide their COVID-19 planning and
response efforts. We began executing these pipelines March 25,
2020, and have delivered and briefed weekly updates to these
stakeholders for over 30 weeks without interruption.

Keywords-COVID-19, Epidemic Modeling, HPC Workflow
Development

I. INTRODUCTION

COVID-19 represents the first pandemic since the 2009
H1N1 outbreak and is the worst pandemic on record since
the 1918 pandemic. Since February 2020, the pandemic has
had a severe economic, social, and health impact. Accord-
ing to the International Monetary Fund (IMF), the global
economic burden for COVID-19 will likely be 9+ trillion
US dollars. More than 113 million confirmed infections
and 2.5 million deaths have been reported globally, with
very different epidemic dynamic trajectories and mortality
witnessed across various countries. Europe and the United
States (US) are seeing a resurgence of cases and the situation
is unlikely to get better anytime soon.

Epidemiological models and workflows comprising of
these models can help provide insight into the spatiotemporal
dynamics of epidemics by: (i) forecasting the epidemic’s
future course, (ii) guiding allocation of scarce resources
and assessing depletion of current resources, (iii) inferring
disease parameters that allow researchers to make better
recommendations and (iv) providing insight into the effec-

tiveness of different interventions. Individual behavior and
public policies are critical influencers for controlling epi-
demics, and computational simulations can be powerful tools
for understanding which behaviors and policies are likely to
be effective. Our studies have used meta-population models,
as well as detailed agent-based models. The network-based
models consider epidemic spread on an undirected social
interaction network G(V,E) over a population V , where
each edge e = (u, v) ∈ E implies that individuals (also
referred to as nodes) u, v ∈ V interact [12], [26]1.

Our contributions and significance. In this paper, we de-
scribe a novel high performance computing (HPC) approach
for executing epidemiological workflows that can support
planning and response to pandemics such as COVID-19. Our
approach is unique: (i) it uses detailed agent-based models
as well as meta-population models to simulate epidemic
dynamics over realistic representations of national-scale
social contact networks, (ii) it splits the workflow across
two supercomputing clusters due to resource constraints,
and (iii) it is used to support near real-time response
efforts. The workflows are comprised of a complex series
of data ingestion, simulation and analytics steps. Details
of how EpiHiper, the agent-based discrete time simulator
for infectious disease spread used in this work, and other
such networked agent-based modeling frameworks work are
described in companion publications and are not the focus
of this paper. However, the basic approach presented here
can be used for other agent models and other synthetic
social contact networks. We focus here on three epidemic
workflows: (i) calibration of the models using county-level
incidence data, (ii) predicting daily county-level incidence
values for time periods covering two weeks to a few months
and (iii) counter-factual analysis of various policy decisions
during the ongoing pandemic. Key steps in all of the
workflows include (i) a data-driven algorithm that integrates
county-level incidence data, as well as individual behavioral
representations and public policies, to calibrate the models
and project incidence going forward; (ii) realistic individual-
level social contact networks and HPC agent-based models

1An extended version of this paper is available at https://www.medrxiv.
org/content/10.1101/2021.02.23.21252325v1
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Figure 1. Combined workflow: This diagram illustrates the complete
timeline of our process, from model configuration through intervention
analysis.

to produce highly resolved outcomes (at the individual and
family levels); and (iii) analytics that combine the simu-
lation output, surveillance data and detailed synthetic data
to support policy assessment. The workflows are executed
in real time, meaning that the pipeline produces epidemic
predictions every week that we share with federal and
state authorities. Splitting and orchestration of workflows
across two supercomputing systems that are geographically
separated requires careful analysis of the workload and
practical constraints.

We demonstrate our results by showing how our epi-
demiological workflows can be used to support a national
COVID-19 response. Our pipeline typically runs 5,000–
17,900 simulations per night, covering the entire US network
which is comprised of about 300 million nodes and 7.9
billion edges partitioned across all 50 states and Washington
DC. The simulations yield ensemble models for prediction
of epidemic incidence curves at the US county level (3140
counties). These results are the first of their kind reported in
the literature for national-scale US networks. The workflow
is orchestrated between University of Virginia’s Rivanna
cluster and Pittsburgh Supercomputing Center’s Bridges
cluster; 20,000 cores of the Bridges cluster are dedicated
each night for completing our complex calibration and
prediction tasks.

We are the lead modeling group supporting our state’s
(Virginia) COVID-19 response. We have provided uninter-
rupted weekly projections and analytical products to the
analysts and senior officials of the state hospital referral
regions (HRR) and local universities (including our univer-
sity) since March 25, 2020.2. We also provide our weekly
forecasts to the Centers for Disease Control and Prevention
(CDC), and our analytical products to the Department of
Defense (DoD). Our results demonstrate that real-time, data-
driven high resolution epidemics science at a national scale

2More details on how our models are used can be found at: https:
//www.vdh.virginia.gov/coronavirus/category/covid-19/model

Figure 2. Timeline of tasks involving human efforts. It shows the schedule
of the sequence of tasks over multiple days for a complete calibration-
prediction cycle. The orange boxes are automated.

is indeed possible3.

Overview. The epidemiological pipeline workflows are
shown in Figures 1, 3, 5 and 4.

Each workflow is split between a local cluster (Rivanna)
and a remote super-computing cluster (Bridges). Our work-
flows support our vision of HPC-oriented, real-time epi-
demic science, and are carefully organized to conform to
the following set of practical constraints. (i) Our access to
the Bridges cluster is limited, so it is not available to us
24/7. We note that the level of access provided to us is very
generous — we have had exclusive access to the cluster,
with over 20,000 cores, for 10 hours a day (from 10 pm
to 8 am) for over 4 months. (ii) Purchased datasets and
tools are maintained on Rivanna cluster; these items are
not ported to the Bridges cluster due to time and licensing
requirements. (iii) Analysts have more consistent access to
and control over the Rivanna cluster, so the workflows are
split between the two sites. The workflows are also designed
to provide a level of resiliency and task parallelization:
we use the Rivanna cluster during the day, and use the
Bridges cluster at night. Figure 2 shows the timeline of tasks
involving human efforts. The overall workflow differs based
on the specific kind of problem addressed, but all of them
consist of the following significant sub-components: (i) gen-
eration of national-scale synthetic social contact networks,
(ii) agent-based and meta-population models that can scale
to large systems, (iii) methods for calibrating and producing
ensemble models, (iv) tools for assembling the input data
and distributing this dataset on cluster nodes, and (v) tools

3More information about our work can be found at https://
biocomplexity.virginia.edu/project/covid-19-pandemic-response

https://www.vdh.virginia.gov/coronavirus/category/covid-19/model
https://www.vdh.virginia.gov/coronavirus/category/covid-19/model
https://biocomplexity.virginia.edu/project/covid-19-pandemic-response
https://biocomplexity.virginia.edu/project/covid-19-pandemic-response


Workflow # Cells # States # Replicates # Simulations Raw
Output

Summ.
Output

Economic 12 51 15 9180 3.0TB 5.0GB
Prediction 12 51 15 9180 1.0TB 2.5GB
Calibration 300 51 1 15300 5.0TB 4.0GB

Table I
REPRESENTATIVE EXAMPLES OF INDIVIDUAL WORKFLOWS, THEIR
SCALE, AND SIZE OF RAW AND SUMMARIZED DATA GENERATED BY

THEM.

Figure 3. Economic workflow: Economic workflow is used for computing
the medical costs incurred due to the pandemic. The models and details of
this can be found in [6]. [1] Incidence data includes about 3000 counties
× over 200 days of entries. [2] An example factorial design has (2 VHI
compliances × 3 lockdown durations × 2 lockdown compliances) × 51
states × 15 replicates = 9180 simulation instances. [3] Size of individual
level output data: 12 cells × 51 states × 15 replicates × multi-million state
transitions = multi-billion entries, about 3TB. [4] Size of aggregate output
data: 12 cells × 51 states × 15 replicates × 365 days × 90 health states
× 3 counts = about 1 billion entries, 2.5GB. Size of synthetic data: 300
million × 8 = 2.5 billion entries.

for post-processing the output data so that summary data can
be sent back to the home cluster for further analysis.

Each of our workflows represent an interesting mix of data
and compute intensive steps and thus crucially need HPC
resources. Table I summarizes some of the key numbers for
case studies we have described to illustrate the workflows.
The partitioning of tasks and specific computation is care-
fully managed to reduce the amount of data transfer between
the two clusters and achieve a near real-time response. Our
paper advances the use of parallel and distributed computing
in this important area – to the best of our knowledge this is
the first time two HPC resources have been used in this
manner to support near real-time epidemic planning and
response.

II. DESCRIPTION OF THE WORKFLOWS

Figure 1 describes the overall workflow and how it is
orchestrated across the two systems. Here we discuss three
specific epidemiological workflows that are described in
Figures 3, 4 and 5. Figure 2 shows the timeline of tasks
involving human effort.

Figure 4. Calibration workflow: [1] Incidence data includes about 3000
counties × over 200 days of entries. [2] An example of calibration design
has 300 cells × 51 states × 1 replicates = 15300 simulation instances. [3]
Size of individual level output data: 300 cells × 51 states × 1 replicates
× multi-million state transitions = multi-billion entries, about 5TB. [4]
Calibration uses aggregate data of size: 300 cells × 51 states × 1 replicates
× 365 days × 90 health states × 3 counts = about 1.5 billion entries, 4GB.

Counter-factual analysis workflow (Figure 3). Counter-
factual analysis refers to the study of outcomes under
various posted scenarios. The range of scenarios considered
reflect the possible trajectory of the epidemic and is not
known in advance. Our counter-factual analysis usually
comprises various lockdown policies, compliances, and non-
pharmaceutical interventions. The system is calibrated to
reflect the current conditions on the ground. Usually such
an analysis entails running a large factorial design and
then computing certain outcomes that combine the output
of the simulations and detailed synthetic social network,
demographic and socio-economic data.

Calibration workflow (Figure 4). Calibration refers to find-
ing plausible configuration(s) that produce simulation output
similar to observed ground truth. Generally, such parameter
searches are carried out by first defining a parameter space
consisting of plausible parameter values, then evaluating
the closeness of the simulation output to the ground truth
at various points in that parameter space. However, when
running the simulation is expensive, an emulator can be
used in place of the actual simulation inside a calibration
loop. An emulator is a statistical model that maps the input
to the output of the simulation; it is cheap to run, and
offers a way to quantify uncertainty for a deterministic
system. To calibrate EpiHiper, a Gaussian Process [31], [34]
emulator is used inside a Bayesian calibration framework for
multivariate output [13], [22] to produce a set of plausible
parameter configurations conditioned on the ground truth
and associated uncertainty on the future predictions. The
calibration task is carried out using the GPMSA framework
[18] in Matlab. The calibration workflow typically resumes
when ground truth data is updated or when we want to
improve our predictions with a more appropriate parameter
space or better-modeled mitigations. The calibration may



Figure 5. Prediction workflow: [1] An example design has (3 partial
reopening levels × 4 contact tracing compliances) × 51 states × 15
replicates = 9180 simulation instances. [2] Size of transmission tree data:
12 cells × 51 states × 15 replicates × 1 million transmissions = 9 billion
entries, about 1TB. [3] Size of summary data: 12 cells × 51 states × 15
replicates × 365 days × 90 health states × 3 counts = about 1 billion
entries, 2.5GB.

reuse the existing model configurations, or generate new
configurations as simulated by EpiHiper. This can vary
by state. After simulation and aggregation, the time series
of simulated case counts is compared to the ground truth
with the aforementioned Bayesian approach to generate
configurations for the prediction workflow.

Prediction workflow (Figure 5). To make predictions, we
run simulations using the model configurations generated
from the calibration workflow, and aggregate individual-
level output to obtain future counts for various forecast-
ing targets (e.g. confirmed cases, hospitalizations, deaths)
at various spatial resolution (state or county level) with
different temporal horizons (from one week to five months
ahead) depending on the objective. The ensemble of the
model configurations and the simulation output provides
uncertainty quantification on the predictions. The prediction
workflow typically resumes when the calibration workflow
generates a set of model configurations, which are simulated
by EpiHiper. The output is aggregated and analyzed by
public health domain experts to identify inconsistencies
(which may then trigger the calibration workflow again).
If the predictions are deemed reasonable, we expand the
configurations with a few possible future what-if scenarios
(e.g. what if the stay-at-home order is lifted earlier; what if
the mitigation compliance rate increases; what if testing and
contact tracing are improved). Then simulations are run for
the expanded configurations, and the results are combined
with the as-is predictions.

III. DESCRIPTION OF HARDWARE, SOFTWARE AND
DATA

In this section, we describe the individual components
of the overall workflow: (i) the underlying hardware, (ii)
the software components used, and (iii) data used as input
and generated as output. As mentioned earlier, the hardware

consists of a home cluster (Rivanna) and a remote super-
computing cluster (Bridges). Our typical workflow depict-
ing the sequence of computations and data transfers between
the two clusters are described in Figure 1, and described
in more detail in the following section. The workflow
relies on two important datasets as inputs: (i) the synthetic
population and associated social contact network for the US,
and (ii) COVID-19 specific disease parameters. Ranges for
these parameters are based on best estimates from COVID-
19 literature. The final component of the pipeline is the
simulation-based models. Although we use meta-population
models in addition to agent-based models, we will focus here
on the agent-based models due to the significant computing
challenges they pose.

Home cluster and remote super-computing cluster. Our
methodology makes use of two computing clusters, which
we refer to as the home cluster and the remote super-
computing cluster. The home cluster refers to the Rivanna
computing cluster available at University of Virginia, the
author’s home institution. The Rivanna cluster is modest-
sized relative to the significantly more powerful remote
super-computing cluster, the Bridges at Pittsburgh Super-
computing Center. The actual simulation runs are executed
on the Bridges cluster. We find this distinction to be fairly
typical and important, as most institutions do not have a
super-computing facility available on their local premises,
and researchers/practitioners often run the less compute-
intensive parts of their workflows on their local systems,
while running more computationally heavy tasks at ded-
icated super-computing facilities. Making this distinction
explicit allows us to formally take into consideration issues
arising from these kind of setups.

Note that commercial cloud computing platforms, such
as Amazon EC2 and Google Cloud Platform, also provide
services to make it relatively easy to set up computing
clusters with software stacks mimicking those of HPC and
super-computing facilities. Hence, this logical separation of
“home cluster” and “remote super-computing cluster” is
also relevant for institutions making use of hybrid cloud
infrastructures, where a small local compute cluster is used
alongside off-premises, cloud-based systems.

Input Data: Synthetic populations and contact networks.
Our epidemic computational models depend upon detailed
synthetic populations and contact networks to support accu-
rate and realistic simulations. Such data is prepared for each
state, see Figure 6 for a summary of node and edge counts
by US state.

For each population, data is supplied as a comma-
separated values (CSV) file containing the traits of each
synthetic person. Whereas particular sets of traits may
vary across simulations, typical choices for the US include
household ID, age and age group, gender, county code, and
the latitude and longitude of home locations. For design



0

2

4

6

8

10

W
Y

D
C VT AK N
D SD D
E

M
T RI M
E

N
H H

I
ID

W
V N
E

N
M N
V

M
S KS AR U
T IA CT O
K

O
R KY LA AL SC CO M
N W

I
M

D
M

O TN IN AZ M
A

W
A VA N
J

G
A

N
C M
I

O
H PA IL FL N
Y TX CA

Number of Nodes & Edges in US Network

Node count (x 10M) Edge count(x 100M)

Figure 6. The diagram shows the number of nodes and edges in the contact network for each U.S. state as used in the simulations.

reasons, but also to avoid the cost of parsing and reading
files from the file system during simulations, the population
data is loaded into a PostgreSQL4 database server. All
simulations access the population data by communicating
with the database server at run-time.

The agent-based models use dynamic contact networks to
encode interactions between persons during simulations. The
initial dynamic contact network in EpiHiper is generated
statically. However, during the course of the simulation,
each edge in the contact network can be turned on and off
dynamically as required in response to, for example, social
distancing interventions. Like the person data, the contact
network of each population is supplied to the simulations
as one CSV file. Each edge in the contact network includes
the identifiers of the two persons in contact, and is anno-
tated by the start time and duration of the interaction, in
addition to the context in which the persons meet (home,
work, shopping, other, school, college, and religion). These
contexts may not be the same for both persons, however;
for example, if one person is at the store, their context
may be shopping, while the grocer they came in contact
with would be working. Due to the large size of the contact
networks, the network is partitioned between different MPI
processes at the beginning of the simulation run. The overall
objective is to split the contact network such that each
partition contains approximately the same number of edges,
while, at the same time, ensuring that all incoming edges
of any given node are in the same partition. In the current
implementation, we utilize a simple algorithm to partition
edges: given a partition, continue to allocate nodes to that
partition until the number of incoming edges is greater than
a threshold (E/P + ε) where E is the number of edges, P
is the number of partitions, and ε is the tolerance factor.
Note that even a simple partitioning scheme (such as the one
described) takes a significant amount of compute time. This
is why we use our current (simple) algorithm rather than one
that is more sophisticated or optimal. We can also cache the

4https://www.postgresql.org/

result of the partitioning computation on disk, which saves
time on future runs.
Input Data to simulation: Disease progression param-
eters and parameter configurations. The disease model
used for this work is shown in Figure ?? in the extended
version of this paper (see footnote 2, page 1) and depicts
the transmission of COVID-19 through interactions between
individuals, and the subsequent disease progression of an
infected individual. As shown in Figures 4 and 5, both
calibration and prediction workflows start by generating sim-
ulation configurations, also known as cells. For calibration
workflows, a larger number of cells are created, each with
smaller numbers of replicates relative to routine prediction
workflows, in order to explore the model configuration
state space. For prediction workflows, however, a much
smaller number of cells are generated which are based on
the most likely model configurations from the calibration
phase, each with a relatively larger number of replicates.
The model configurations specify which populations and
contact networks to use, as well as the disease parameters,
interventions, initializations, and the number of days to
simulate.
Input data to calibration. For calibrations, we use con-
firmed cases from multiple data sources5 6 7 as our ground
truth dataset. The ground truth data has county-level daily
confirmed case counts starting from January 21, 2020, for
over 3000 counties (as of April 22, 2020, there were 2772
counties with case counts greater than zero).
Simulation-based models. EpiHiper is an agent-based dis-
crete time simulation model for infectious disease spread
in a social contact network. It is implemented as a paral-
lel codeset in C++/MPI. It computes probabilistic disease
transmission between nodes (representing individuals) in a
network of edges (representing interactions between individ-
uals), as well as the disease progression within each infected

5https://github.com/nytimes/covid-19-data
6https://nssac.bii.virginia.edu/covid-19/dashboard/
7https://coronavirus.jhu.edu/map.html

https://www.postgresql.org/
https://github.com/nytimes/covid-19-data
https://nssac.bii.virginia.edu/covid-19/dashboard/
https://coronavirus.jhu.edu/map.html


individual. It is based on the synthetic populations, accessi-
ble to the simulations via a database launched at run-time,
and the synthetic contact network, partitioned pre-simulation
and loaded into memory of the allocated processing units in
order to support scalability. The simulation keeps track of
the health state of each individual at each tick (the temporal
resolution, set to one day in this case).

Output data: dendograms and summary information.
EpiHiper produces state transitions of all persons during the
simulation. Each line of the output file written by EpiHiper
includes the tick of the transition event, the identifier of the
person, their exit state, and the identifier of the person caus-
ing the state transition in the case of disease transmission.
The size of the output depends on the total number of ticks,
overall epidemic size (number of infected persons), as well
as the complexity of the finite state machine. Dendograms
are part of this output, which are transmission trees rooted
at initial infections.

From the individual-level output data, we can aggregate
simulation results to the county level for different health
states, and use the summary data for calibration and pre-
diction. For example, the time series of daily cumulative
counts of symptomatic cases at the state or county level are
compared to the ground truth data as part of our calibration,
and daily counts of symptomatic cases, hospitalizations,
ventilations, and deaths are used in our predictions.

IV. ORCHESTRATION OF THE WORKFLOWS

Structure of simulation jobs. The software stack on the
Bridges cluster uses the Slurm scheduler for scheduling
jobs, and Intel MPI for distributed communication. Post-
greSQL servers are utilized to run the population databases.
The number of processes to use per compute node is prede-
termined statically based on the configuration of individual
compute nodes on the cluster. Furthermore, as described
earlier, the population networks are partitioned statically
beforehand, and they also determine the number of compute
nodes/processes that will be utilized when running simu-
lation jobs that use them. For simulations sharing a given
user population, a single PostgreSQL server is started on a
compute node and made available. The simulations use them
to load population information at run-time. The data transfer
between the Rivanna cluster and the Bridges cluster utilizes
the Globus platform8.

Every 24 hours, simulations are generated and executed
to support the decision-making processes of policymakers.
The process begins with the generation of the simulation
configurations. The nature of the configurations generated
depends on whether the calibration or prediction workflows
are to be executed. Calibration workflows typically generate
a large number of different model configurations to explore

8https://www.globus.org/

the space of the configurations. Prediction workflows, how-
ever, typically have a smaller set of model configurations,
each replicated multiple times.

Once the configurations are generated, their transfer from
the Rivanna cluster to the Bridges cluster is started man-
ually using the Globus platform. Once the configurations
are copied over, the population databases are started, one
per population. To speed up the start of the population
databases, snapshots of the databases are generated when
the populations are initially created, and these snapshots are
instantiated at run-time. Next, scripts are used to submit
Slurm job arrays, which are scheduled to run using the
heuristic scheduling strategy discussed above. Once simula-
tion jobs have completed, the summary of simulation outputs
are generated and transferred back to the Rivanna cluster
using the Globus platform.

V. MAPPING AND SCHEDULING JOBS ON PSC MACHINES

Mapping our workflows on the Bridges cluster is an
important component. First, recall that the overall efficiency
of the workflow is measured as time to complete the
workflow rather than a single replicate of a single cell.
Abstractly, our workflows can be thought of as large scale
hierarchical statistical experimental designs. Each workflow
is comprised of 51 regions (50 states and DC), and each
region is then comprised of a number of cells that each
denotes one combination of various parameters used to study
a given problem. Each cell is further comprised of a number
of replicates. Together, this represents a 3-level hierarchy:
regions-cells-replicates. Each cell for a given region uses
exactly the same input data; thus, we view our atomic jobs as
〈cell, region〉. For certain workflows, it is more convenient
and efficient from a scheduling perspective to group several
cells into one to create jobs of appropriate sizes.

In general, the running time for a single replicate for
〈cell, region〉 is not fixed; this is due to (i) randomness
within the computation, (ii) triggered interventions that can,
at certain times, cause new calculations to be spawned
based on the epidemic, (iii) number of processors assigned
to the replicate and (iv) machine-specific randomness due
to processors’ computation, access to the database etc.
Nevertheless, by running the replicate several times we can
obtain a reasonable bound on these times. For the workflows
considered, we fixed the number of processors assigned to
each 〈cell, region〉. We state the mapping problem in two
stages:
The workflow mapping problem (WMP). We are given
a set of 〈cell, region〉 tasks, denoted by task T [r, c]. We
assume that we know a bound tl(T [c, r]) and tr(T [c, r])
denoting the lower and upper bound on the time to com-
plete task T [c, r] using p(T [c, r]) processing units. We
use t(T [c, r, ]) to denote the empirical mean running time
obtained by running the computation several times and will
use this for the rest of the paper. We assume p(T [c, r]) is

https://www.globus.org/


known a priori. The problem is assigning an order to these
tasks, then supplying this ordered set to the Slurm scheduler
in such a way that minimizes the overall completion time
of all tasks.

WMP is NP-hard. This can be seen by reducing the 2D
Bin packing problem to the WMP problem: Rectangles
become tasks: their width becomes p(T [c, r]) and their
height is running time t(T [c, r]). This reduction is useful
and this correspondence also leads to natural heuristics for
the problem discussed later in this section.

Database Access Constraints. There is one additional
constraint that needs to be taken care of which makes the
problem computationally challenging. The constraint relates
to database access. Recall that each task needs access to
the input synthetic network. The number of simultaneous
connections to the database are upper bounded for technol-
ogy and efficiency reasons. We can capture this by using
a compatibility graph. Usually compatibility constraints for
tasks are captured as a coloring problem: we have a node
for each task, and two tasks u and v have an edge iff they
cannot be scheduled at the same time. A valid coloring
captures a feasible schedule. In our case, the problem is
more challenging and can be best described as a new kind
of vertex coloring problem, which we will call a relaxed col-
oring problem (r-relaxed-coloring): We are given a graph
G(V,E). Edges represent conflicts, and vertices represent
tasks. We are given a number r. The (r-relaxed-coloring)
is to assign a color to each node in the graph (such a graph
would be constructed for each region separately) such that if
a node v gets color c[v] then no more than r of its neighbors
can get the color c[v]. If r = 1, we get the classical coloring
problem and thus all the hardness results hold for the relaxed
coloring problem as well.

The DB-access constrained workflow mapping problem
(DB-WMP). DB-WMP is a constrained version of the WMP
wherein the number of tasks that can be scheduled simul-
taneously is bounded. Thus the general DB-WMP problem
can be thought of as 2D Bin packing with an interesting
compatibility constraint.

Our Mapping heuristic (MAP). Our mapping heuristic
is based on a few simplifying assumptions and exploit-
ing the problem structure. Assumption 1: We assume that
all tasks for a given region take the same amount of
time which is t(T [c, r]), in other words ∀ci, t(T [ci, r]) =
t(T [c, r]). Assumption 2: All tasks have to be scheduled
non-preemptively. Assumption 3: The number of connections
that can be made by tasks corresponding to a region r is
bounded by B(T [r]) (i.e. it is not dependent on the cell).
Assumption 4: For each region, all the tasks T [ci, r] require
the same number of threads for simplicity and are denoted
by dt(T [c, r]), thus

∑
c dt(T [c, r]) > B(T [r]). Our heuristic

is motivated by the non-decreasing first fit heuristic. Recall
the task of this heuristic is to provide the Slurm scheduler

an ordering and chunking of tasks. Slurm further does a
certain amount of real-time optimization. It comprises of
the following steps:
Step 1. Split the overall database so that we have one
database per region. For various system-level reasons and
from the standpoint of human productivity, each such
database occupies one node of the system. Thus, all tasks
corresponding to a given region can access the region-
specific database. Access by each region can now be done
in parallel with no constraints beyond the fact that we
have a constraint on the total number of processors. Let
T [r] = ∪cT [c, r] denote the set of tasks for region r. The
above decomposition makes the coloring problem easy. We
now have r subsets — one subset per region. There is no
edge between the subset, and the graph within each subset is
a complete graph. All tasks for a given region r thus belong
to a Region set RS(r).
Step 2. Organize the tasks in non-increasing order by time
needed to complete the computation. The time is directly
correlated with the size of the network for each cell. Using
an idea motivated by the 2D Bin packing methods, we
use a level-oriented approach [8], [9], [35], [38]. Think
of processors on the X-axis and time on the Y-axis. The
tasks are mapped from left to right (in terms of available
processors), in rows forming levels. Within the same level,
all tasks are packed so that their bottoms align. The first level
is the bottom of the strip and subsequent levels are defined
by the time taken of the slowest task on the previous level.
Step 3. We considered two different mapping algorithms:
The Next-Fit Decreasing time with database constraints
(NFDT-DC) algorithm assigns the next task T [c, r] (in non-
increasing time) on the current level if T [c, r] fits and
database access constraints are satisfied. Otherwise, the
current level is ”closed” and a new level is created. The
First fit decreasing time with database access constraint
(FFDT-DC) algorithm schedules the next task in non-
increasing order of time, until either the database access
constraint for the region is violated, or, if no level can
accommodate the task, a new level is started.

Without the database constraints, the NFDT-DC and
FFDT-DC algorithms have worst-case performance guar-
antees of 2 and 17/10 respectively. Let EC denote the
empirical efficiency of our method. This is computed as the
ratio of the total time used by all processors as they were
computing divided by the product of the total processors
and the time when the last task was completed. As the next
section discusses, our algorithms do quite well; the FFDT-
DC ordering achieves a very high system utilization.

VI. PERFORMANCE ANALYSIS

Runtime performance of EpiHiper. Figure 7 (top) shows
that EpiHiper’s running time increases linearly with its
input size. On the other hand, Figure 7 (middle) shows
how increasing the number of processing units for three



Figure 7. (top) Running time of EpiHiper on networks of different
sizes given 40 processing units. (middle) As the number of processing
units increase, the corresponding improvement in the performance of the
simulations illustrates the strong scaling results of EpiHiper. Beyond
some point, which varies with the problem size, the benefit of using
more resources starts to diminish. (bottom) Running time of EpiHiper
varies with different interventions in the simulation. Simulations with more
interventions, or with more complex interventions, take more time.

medium-to-large networks can significantly improve simu-
lation performance. The improvement in the performance,
however, starts to decrease beyond a certain number of
processing units due to increasing communication costs be-
tween processes. It may even become slower with too many
processes. In Figure 7 (bottom), we show that EpiHiper’s
running time depends also on the interventions implemented
in the simulation. In the base case, the simulation has
implemented VHI (voluntary home isolation), SC (school
closure), and SH (stay-at-home). When we add more inter-
ventions to the simulation, the running time increases. The

Bridges Cluster Rivanna Cluster

# Allocated nodes 720 50
# CPUs/node 2 2
# Cores/CPU 14 20
RAM per node 128GB (DDR4) 384GB (DDR4)
CPU Intel Haswell E5-2695 v3 Intel Xeon Gold 6148
Network Intel Omnipath-1 Mellanox ConnectX-5
Filesystem Lustre Lustre

Size of user traits and contact networks 2TB (one time)
Size of daily simulation configurations 100MB–8.7GB (per day)
Size of raw simulation outputs generated 20GB–3.5TB (per day)
Size of summarized outputs 120MB–70GB (per day)

Table II
CONFIGURATION OF THE BRIDGES CLUSTER AT PITTSBURGH
SUPERCOMPUTING CENTER AND THE RIVANNA CLUSTER AT

UNIVERSITY OF VIRGINIA, ALONG WITH DATA GENERATED AND
MOVED ACROSS THEM.

simpler interventions RO (partial reopening), which extends
SH, and TA (testing and isolating asymptomatic cases),
which extends VHI, increase running time marginally. The
more complex interventions PS (pulsing shutdown), which
repeatedly alternates SH and RO, and D1CT (distance-1
contact tracing and isolating), which affects many more
nodes and edges, significantly increase the running time.
The most complex intervention we have implemented so far,
D2CT (distance-2 contact tracing and isolating), increases
the running time by almost 300% from the base case.

Scheduling and partitioning simulation jobs. The primary
purpose of the workflow presented in this paper is to serve
the needs of policymakers by providing them with timely
predictions of disease progression that incorporates the most
recent data. To serve this purpose, we face a high throughput
problem where we have to maximize the number of simula-
tion jobs we can execute in order to generate calibration
and projection results. We are given two constraints (i)
limited compute time (10:00pm - 8:00am), and (ii) limited
number of compute nodes as described in (Table II). The job
scheduling strategy presented in the previous section focuses
on timeliness, that is, reducing the time span required to
execute a given set of jobs on the compute cluster.

The minimal memory requirement per job is given by
the size of the contact network which is stored in memory
during runtime. Furthermore, the memory requirements may
increase due to the complexity of interventions performed
in a scenario. Our experience is that in nearly all cases, the
additional memory is proportional to the network size. For
simplicity, we therefore divided the 51 regions (networks)
into 3 categories: small (2 compute nodes), medium (4), and
large (6). With these assignments, we were able to guarantee
that the jobs have sufficient memory to complete even the
complex intervention scenarios. We intentionally avoided
using partial nodes in order to limit problems caused by
competing memory requirements of different jobs running
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Figure 8. Variance in runtime for EpiHiper simulations for different US states, across different cells or simulation configurations.
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Figure 9. Utilization of compute resources on Bridges cluster for different
days of workflows. The left figure shows utilization for the days when all
50 states and DC were simulated, while the right figure shows utilization
for days when only different cells for the state of Virginia were simulated.

on the same node. By consistently using the maximum
number of cores available per node, we ensure that the
available compute resources are fully utilized.

Furthermore, we chose to create static network partitions
in order to save compute time, since partitioning the network
to binary chunks for California alone would take over one
hour. The time for partitioning a network is larger than the
typical run time for a simulation run, which usually requires
between 100 to 300 time steps of about 3 seconds each for
a network the size of California (Figure 7 (left)). We chose
not to assign additional resources, since Figure 7 (right)
shows that increasing the number of compute nodes for
a single simulation gives diminishing returns in terms of
runtime; due to that, the cost of messaging negates any gains
obtained from using more compute power. After the general
categorization of all jobs into the 3 categories above, we are
faced with maximizing the number of simulations we are
able to run within our time window. Every night, we have
a varying number N jobs to run, and face the challenge of
scheduling them efficiently.

While supercomputing facilities can grant access to a
large amount of resources, access to these resources come
at a large cost, either for the users who are paying for the
resources directly or for the taxpayer in case of publicly
funded research. Thus one important metric to consider for
the scheduling problem is the issue of resource utilization.
Figure 9 shows the resource utilizations for our workflows,
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Figure 10. Changes in memory required for different cells for VA (left)
and US states (right) at different timesteps. In the left figure, every line
corresponds to a different cell or simulation configuration generated for the
state of Virginia, and shows the mean memory required (across replicates).
In the right figure, every line corresponds to a different US state, and shows
shows the mean memory required (across cells).

in terms of percent of CPU hours allocated that were actually
used. The Figure 9 (left) shows the distribution of utilizations
of 9 workflow runs which simulated all 51 regions, while
Figure 9 (right) shows the same for 24 workflow runs that
simulated multiple configurations for the state of Virginia.
In the case of all state workflows, we have a median
utilization of 96.698% while the same for Virginia-only
workflows is 95.534%. Note that the above results are for the
scheduling configuration (FFDT-DC) where the largest jobs
were scheduled first. Our initial workflow runs without this
scheduling scheme (NFDT-DC) led to utilization numbers
between 44.237% and 55.579% for the all-state case.

Runtime performance of simulation ensembles on remote
system. Here we present the runtime characteristics of
the simulations. Figure 8 shows the variance in runtime
(across compute nodes) for the 50 US states and DC for
a single representative day of simulation. To understand
the dynamic nature of the total memory required for the
different EpiHiper simulations, we plot the total memory
required for different cells, and US states in Figure 10.
Figure 8 shows that runtimes of simulations are dependent
on intervention scenarios and is strongly correlated to the
network size. The memory increase during the simulation in
Figure 10 is due to the intervention scheduled at fixed time
points. Figure 10 (left) shows that memory requirements in



the same scenario may depend on the compliance of nodes
with the interventions, i.e., higher compliance and, therefore,
more scheduled changes to the system state require more
memory. Finally, Figure 10 (right) shows that the final
memory requirements are strongly correlated with the initial
requirements, i.e., the network size.

VII. ILLUSTRATIVE CASE STUDIES

In this section, we discuss three case studies: (i) medical
cost of the pandemic illustrated in Figure 3, (ii) forecasting
workflow illustrated in Figure 5 and (iii) calibration work-
flow illustrated in Figure 4. The second and third workflows
are discussed in the Appendix F in the extended version of
this paper (see Footnote 1).

The workflows selected illustrate a range of tasks under-
taken using the two supercomputing clusters.

Case study: Medical costs of COVID-19. In this study,
we estimate the medical costs of COVID-19 in the US.
The overall impact also includes the cascading effect to
the Gross Domestic Product (GDP), which can be analyzed
by an input-output or general equilibrium model. Since the
purpose is to demonstrate the workflow, we will focus on
the medical cost estimating.

The medical costs include costs incurred by COVID-
19 patients for medical attention, hospitalization, ventilator
support, etc. For each patient, the total costs depend on
the disease severity. We consider a calibrated (towards
R0 = 2.5) disease model with different scenarios with
respect to NPI (non-pharmaceutical intervention) duration
and compliance. For each scenario in our factorial design
of 12 cells, we run simulations with 15 replicates for each
of the 51 regions (50 states and DC), with county-level
seeding derived from county-level confirmed case counts.
The simulation outputs individual-level data on who are
infected, receiving medical attention, hospitalized, and/or
on ventilator support each day. The aggregate data is used
to compute the total medical costs for each scenario. The
details of the study are described in [6]. The workflow for
our economic impact analysis consists of the following steps:
(i) On Rivanna or Bridges cluster, calibrate the disease
model towards R0 = 2.5. (ii) On the Rivanna cluster,
prepare simulation configuration files for a factorial design
of different NPI durations and compliance; get the most
recent county-level confirmed case counts and use them to
prepare county-level seeding. (iii) Send the disease model,
seeding, and configuration files to the Bridges cluster. (iv)
On the Bridges cluster, create database jobs and simula-
tion jobs, use our scheduling heuristic to submit jobs, and
run post-simulation data aggregation. (v) Transfer aggregate
simulation data to the Rivanna cluster. On the Rivanna
cluster, run the economic impact model to estimate medical
costs.

VIII. RELATED WORK

Over the last decade, there has been substantial interest
in developing scalable solutions to support various epi-
demiological tasks. This includes: planning and counterfac-
tual analysis, forecasting, and various resource optimization
problems. There has also been interest in developing web-
based tools to support these tasks. The models used in
these papers often range from simple statistical models to
compartmental models. Due to space considerations, we only
highlight a few important papers here.

Agent-based models in epidemic sciences can be traced
back to the earlier work on human immunodeficiency virus
(HIV), although the models were largely focused on the
structural analysis of small networks; see [12], [16], [19].
The use of the models was largely restricted to modeling
studies. Recent papers that aim to scale these simulations to
the national level include [4], [30].

In [3], [10] the authors report on the development of web-
based systems to carry out large computational experiments
in support of epidemic planning. See [11], [20], [28] for
other related efforts.

Researchers have also created data-driven pipelines to
support epidemic forecasting. CDC runs an annual challenge
in this area for studying influenza. Several important ad-
vances have been made to improve the overall forecasts;
most of the work in this space is either statistical time
series models or simple compartmental mass action models;
see [32], [36]. Operational agent-based models for epidemic
forecasting have not yet been reported on. Recently there
have also been a lot of community-wide efforts related to
COVID-199 10 11; our group submits forecasts to a number
of these efforts.

Developing scalable pipelines and workflows for HPC
tasks involving large datasets has also been well-studied
in literature [14], [21], [25], [29]. For example, the au-
thors of [14] present a technique for building scalable
workflows for analyzing large volumes of satellite imagery
data, while [25] present a system for analyzing workflows
related to weather-sensing data. Other studies have presented
generalized methodologies for building scalable workflows
for tasks requiring HPC platforms [5], [21].

Recently there has been a flurry of papers on developing
agent-based and equation-based models for planning and
response to the COVID-19 pandemic; see [1], [2], [7], [15],
[17], [23], [24], [27], [33], [37] The present paper does not
focus on our agent-based models — they are covered in a
companion paper.

Our primary focus is on creating scalable HPC-oriented
workflows to support a range of epidemiologically rele-
vant tasks in real-time. Our work shows how two large

9https://github.com/ihmeuw/covid-model-seiir-pipeline
10https://covid-19.bsvgateway.org/
11https://reichlab.io/

https://github.com/ihmeuw/covid-model-seiir-pipeline
https://covid-19.bsvgateway.org/
https://reichlab.io/


supercomputing clusters have been used to meet that goal,
and is a step towards demonstrating the use of hybrid
supercomputing cloud technology for epidemic science. The
resulting challenges are unique, and form an important data-
driven simulation platform.

IX. CONCLUSION

We describe how we have developed high performance
computing-oriented epidemic workflows in order to support
the planning and response to pandemics such as COVID-19.
Our workflows are unique in their use of two geographically
separated supercomputing clusters. The workflows are also
unique from the standpoint of executing large data-intensive
steps that incorporate daily county-level surveillance and
policy data, national and highly resolved agent-based simu-
lations of epidemic processes, and post-simulation analytics
for projections and counter-factual analysis. The work arose
in response to requests from federal and state agencies
to support their work on COVID-19 planning, and, using
this approach, we have been able to provide uninterrupted
support for over 30 weeks. This was accomplished in record
time – we began this effort in early March after access
to such machines was made possible by the HPC Con-
sortium. We were provided with unprecedented support by
Pittsburgh Supercomputing Center. Our results demonstrate
that real-time data-driven high resolution epidemics science
at national scale is possible. COVID-19 is not over; we are
witnessing a second, or possibly third, wave. The tools we
have developed will assist policymakers in developing and
evaluating new intervention measures, and will hopefully
help prevent COVID-19 from becoming an even larger-scale
outbreak.
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