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Abstract 

Background: Agencies such as the Centers for Disease Control and Prevention 
(CDC) currently release incidence data (e.g., Influenza), along with descriptive 
summaries of simple spatio-temporal patterns and trends. However, public health 
researchers, government agencies, as well as the general public, are often interested 
in deeper patterns and insights into how the disease is spreading, with additional 
context. Analysis by domain experts is needed for deriving such insights from 
incidence data. 

 
Objective: Our goal is to develop an automated approach for finding interesting 
spatio-temporal patterns in the spread of a disease over a large region, such as: 
regions which have specific characteristics, e.g., high incidence in a particular week, 
those which showed a sudden change in incidence, or regions which have 
significantly different incidence compared to earlier seasons. 
 
Methods: We develop techniques from the area of transactional data mining for 
characterizing and finding interesting spatio-temporal patterns in disease spread in 
an automated manner. A key part of our approach involves using the principle of 
minimum description length (MDL) for representing a given target set in terms of 
combinations of attributes (referred to as clauses); we consider both positive and 
negative clauses, and relaxed descriptions, which approximately represent the set, 
and use integer programming to find such descriptions. Finally, we design an 
automated approach, which examines a large space of sets corresponding to 
different spatio-temporal patterns, and ranks them based on the ratio of their size to 
their description length (referred to as their compression ratio). 
 
Results: We apply our methods for finding spatio-temporal patterns in the spread 
of seasonal Influenza in the United States (US) using state level ILI activity indicator 
data from the CDC. We observe that the compression ratios are over 2.5 for 50% of 
the chosen sets, when approximate descriptions and negative clauses are allowed. 
Sets with high compression ratios (e.g., over 2.5) correspond to interesting patterns 
in the spatio-temporal dynamics of ILI. Our approach also outperforms other 
baselines in terms of the compression ratio. 
 

Conclusions: Our approach, which is an unsupervised machine learning method, 
can provide new insights into the patterns and trends in disease spread in an 
automated manner. Our results show that the description complexity is an effective 
approach for characterizing sets of interest, which can be easily extended to other 



diseases and regions, beyond Influenza in the US. Our approach can be easily 
adapted for automated generation of narratives. 
 

Keywords:  Epidemic data analysis; Summarization; Spatio-temporal patterns; 
Transactional data mining. 
 

Introduction 
Large-scale spatio-temporal analyses and forecasts are becoming increasingly 

common for several diseases, such as, Influenza [1, 2, 3, 4]. There is a lot of public 
interest in analysis of spatio-temporal trends relating to how these diseases are 

spreading across the US.–--this includes statements about whether the season has 

officially started, a listing of regions which have differing levels of activity, the 

contrast between the current season and earlier seasons, etc. Such analyses have a 

broad readership, and are popular among news media, the general public, 

government agencies, as well as public health organizations; this is evidenced by 

spatio-temporal patterns [5, 6] about the spread of Influenza from news agencies 

and blogs.  

Such patterns are typically identified manually by domain experts, who have 

significant expertise on specific diseases. Data for such analyses often comes from 

public health agencies, such as the Centers for Disease Control and Prevention (CDC) 
[7] and World Health Organization (WHO). Reports generated by CDC contain raw 

surveillance data on metrics, e.g., activity level from outpatient visits and rates of 

hospitalization, across states in the US. In addition, summaries of regions with 

specific characteristics, e.g., those which have high activity levels, are also included 
in the reports.  Such summaries can be found in the CDC reports [7, 8]. For instance, 

the CDC report in [8] summarizes the states with high Influenza-like Illness (ILI) 

activity for week ending on Mar 04, 2017 with the number of those states followed 

by explicit listing of their names.   

Such descriptive listings are easy to construct from raw data but are tedious to read 

and do not provide deeper insights into the disease spread. In contrast, the analysis 

by Mashable [6] is a succinct description of the set of states which have widespread 
activity, namely, all states in the contiguous U.S., except Oregon. The analysis by the 

New York Times [5] is also a good and succinct description of the set of states which 

have reported widespread activity for three consecutive weeks. In addition to 

descriptions of the set of states with a particular activity level, sets exhibiting 
specific temporal patterns might also be of interest. An example is the set of states 

which maintained a stable high activity for three consecutive weeks, ending in the 

week of January 27, 2018: Most states which had high ILI activity level four weeks 

back, plus the states of New Jersey, New Mexico, Virginia, Washington, Wyoming. 
Such descriptions involve identification of features common to these states, which 

provide additional insights on the outbreak. 



The overall objective of our work is to automate the process of identifying 

“interesting” spatio-temporal patterns from disease surveillance data, and 
generating succinct descriptions for them. In order to do this, we encode the 

incidence data as binary matrices (presence or absence of a feature), and use 

techniques from pattern mining [28, 29] of transactional data to find insights into 

epidemic spread; we demonstrate its utility using seasonal influenza in the United 
States as a case study. 
 

Methods 

Data 

We use the Influenza-like Illness (ILI) activity indicator data available at state level 
from CDC [22]. In the dataset, each state for each week during a given influenza 
season, is assigned an activity level from 1 to 10 based on the severity of influenza 
prevalence in that week (measured using the percentage of outpatient visits that 
show influenza-like symptoms) [23]. These activity levels are also grouped into 
coarser labels such as Minimal (1-3), Low (4-5), Moderate (6-7), High (8-10). We 
also incorporate the geographic spread index as published by CDC in [24], which 
categorizes the states based on the internal spatial spread of influenza. We use a 
number of features associated with each state, which are defined by the CDC, and 
can be categorized as follows: 
1. Geographical/ Spatial: Features such as Great Lakes, South East, Mid-Atlantic etc.  
2. Temporal: Features such as activity level (e.g., high, moderate and low) in the tth 
week before the current one, geographical spread (e.g., widespread, local) in the tth 
week before the current one, whether the number of infections has crossed a 
threshold, whether the peak has been reached, and similarity with past season. In 
the description below, these features will be denoted by “was1_high” (states with 
high ILI activity 1 week ago), “was2_moderate” (states with moderate ILI activity 2 
weeks ago), “was52_high” (states with high activity 52 weeks ago), etc. These 
features capture the spatial, temporal, and severity aspects of the reported cases.  
Full list of attributes and their description is presented in the Appendix. 
 
In our experiments, we use data corresponding to weeks for the years 2014 to 2017. 
To generate narratives for a particular week, we use the data from these reports for 
the current week, the last three weeks, and the data 52 weeks ago to generate the 
temporal data for each state. This is expressed as a data matrix D with the following 
characteristics: 
1. Number of regions (states) or rows: 51 (50 states and District of Columbia)  
2. Number of features or columns: 42 (spatial, temporal, and severity features) 
Therefore, the data matrix 𝐷 for a week has 2142 entries.  
 

Problem Formulation  

Let Dn×m be the data matrix, where each row corresponds to a state and each column 
to a feature, and Dij = 1 if state i has feature j. Let U = {e1, ..., en} be the universe of 
elements, in our case, the set of all states. Let Dj = {i : Dij = 1} denote the set of 



elements having feature j. Let S(j1, . . . , jk) = Dj1  ∩ …∩ Djk denote the set of elements 

that have features (j1, …, jk) (denoted by 𝒋); referred as a conjunctive clause.  The 
clause S(𝒋) has length k, meaning that it is formed by the intersection of k features. 
 
Given a target set T ⊆ U, we consider expressions of T in terms of unions and 

differences, i.e., T = ⋃ S(𝐣ℓ)r
ℓ=1 − ⋃ S(𝐣ℓ)s

ℓ=r+1 , with an associated cost of ∑ α𝑟
 ℓ=1 ⋅

NUM(𝒋ℓ) + ∑ β𝑠
 ℓ=𝑟+1 ⋅ NUM(𝒋ℓ), where and 𝛼 and 𝛽 are the constant parameters 

associated with positive (S(𝐣ℓ) 𝑓𝑜𝑟 𝑙  ∈ {1,   … ,  𝑟}) and negative clauses 

(S(𝐣ℓ) 𝑓𝑜𝑟 𝑙  ∈ {𝑟 + 1,   … ,  𝑠}) respectively, and 𝑁𝑈𝑀(𝒋ℓ) = 𝑘ℓ denotes the number 

of features involved in a clause 𝑆(𝒋ℓ) = 𝑆(𝑗1
ℓ, … , 𝑗𝑘ℓ

ℓ ). The negative clauses describe 

the elements which need to be removed from the set of positive clauses, in order to 
exactly cover the elements of 𝑇.   
 
Given a subset 𝑇 ⊆ 𝑈 (referred to as a “target” set), and a dataset 𝐷, the 
𝑀𝑖𝑛𝐷𝑒𝑠𝑐(𝑇, 𝐷) problem involves finding a set of tuples 𝒋𝟏, … , 𝒋𝒔, such that 𝑇 is 
represented in terms of unions and differences and the associated cost ∑ 𝛼𝑟

ℓ=1 ⋅

𝑁𝑈𝑀(𝒋ℓ) + ∑ 𝛽𝑠
ℓ=𝑟+1 ⋅ 𝑁𝑈𝑀(𝒋ℓ) is minimized. 

 

In order to make the descriptions interpretable, we will restrict the sizes of these 
clauses, i.e., the number 𝑘ℓ of columns whose intersection is allowed; here, we will 
focus on 𝑘ℓ ≤ 2, though our approach extends to any 𝑘. 
 
Our main idea for finding patterns of interest is to explore the space of all target sets 
and identify those which have low cost descriptions. This is motivated by the 
Minimum Description Length (MDL) Principle, that forms the basis of many machine 
learning methods to find such descriptions; we refer to [15, 30] for details on this 
topic.  
 
In some cases, the target set 𝑇 does not have a small description, but we can find a 
set 𝑇 ‘ which is close to 𝑇, and has a smaller description than 𝑇. We model this as 
finding a representation for a subset 𝑇 ’ such that 𝑇 ’ ≈ 𝑇, which is formalized as the 
𝑀𝑖𝑛𝐴𝑝𝑝𝑟𝑜𝑥𝐷𝑒𝑠𝑐 problem: Given a target set 𝑇 ⊆ 𝑈, a dataset 𝐷, and constant 
parameters 𝛼, 𝛽, 𝛾, the 𝑀𝑖𝑛𝐴𝑝𝑝𝑟𝑜𝑥𝐷𝑒𝑠𝑐(𝑇, 𝐷) problem involves finding a set of 
tuples 𝒋𝟏, … , 𝒋𝒔, for representation of 𝑇 ’as unions and differences, such that the 
symmetric difference of 𝑇 𝑎𝑛𝑑 𝑇 ’is of size at most 𝛾|𝑇|, and the associated cost is 
minimized.  Since MinApproxDesc is a generalization of MinDesc, we only consider 
the MinApproxDesc problem in the rest of the paper. The 𝑀𝑖𝑛𝐷𝑒𝑠𝑐 and 
𝑀𝑖𝑛𝐴𝑝𝑝𝑟𝑜𝑥𝐷𝑒𝑠𝑐 problems are both NP-complete, even when 𝑘ℓ = 1, which 
corresponds to the set cover problem (we refer to [17] for discussion on this topic). 
 

Approach and Implementation 

We use an integer programming approach described in the Appendix, which is able 

to scale well for the problems of interest in epidemic analysis. We use the Gurobi 

optimization software [18] to solve the resulting Integer program. The size of the 



instances encountered results in programs that can be solved very efficiently. So, we 

expect our method will scale to much larger datasets easily.  

Generate Set Descriptions.  

We consider the set of states with a high activity level in the current week, as a 
target set T. We prepare the data matrix D for the current week. These states have 

value 1 in the column ‘high’ of the matrix. Then, we use our method to compute the 

succinct descriptions for the target set T for the parameters (𝛼, 𝛽, 𝛾) = (2, 2, 0).  

From the MDL principle, a set 𝑇 is likely to be an interesting pattern if it has a high 
compression ratio. 

We also study the impact of the parameter 𝛾 on the description length. Recall that 
the parameter 𝛾 controls how accurately we attempt to describe the target set. A 
larger 𝛾 would mean greater error, but should lead to a more succinct description. 
The target set T is the set of states with high activity in the current week. We run our 
method for a given week with target set T and, for each value of γ ∈ {0.1,  0.2,  0.3}.  

 

Ranking Set Descriptions.  

It is not known a priori which target sets would give interesting patterns. We search 
from a large space of possible target sets corresponding to all clauses with up to 𝑘 
terms (i.e., sets formed by intersections of up to k columns), compute their MDL 
scores, and rank them based on their compression ratio, and other characteristics.  
 

Baselines and Evaluation Measures 

The work of Xiang et al. [11] is directly related to our approach and can be 
considered as a special case of MinDesc, where only positive clauses are allowed. We 

refer to this as DBS. We use the number of clauses used by DBS and MinApproxDesc 

for comparison. 

We use the compression ratio as a metric for evaluating the performance of our 
method. Let the number of clauses used in description by MinApproxDesc for a 
target set T be s. The compression ratio provided by MinApproxDesc is defined as the 
ratio of the target set size |T| to the number of clauses used in the description by 
solution to MinApproxDesc, 
 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
|𝑇|

𝑠
 

We also provide a scoring system to determine the “interestingness” of a target set. 
Sets consisting of states with high activity level are likely to be more interesting 
than those with moderate, low or minimal activity levels; therefore, these are 
assigned scores 4, 3, 2, 1 respectively (i.e., 4 for sets with high activity level, and so 
on). Next, states exhibiting a sudden change in activity level (e.g., from low to high, 
or vice versa) are more interesting than those having no change in activity levels we 



assign a score of 5 for the former type, and 2 for the latter. Then, “a set of states with 
high this week and minimal 1 week ago” has a score of 9, while “a set of states with 
minimal this week and minimal 1 week ago” has a score of 3. This process is 
described in detail in the Appendix. The score assigned to each target set/ 
description measures its “interestingness”. 

Results 

Generate Set Descriptions. 

The text description, in Table 1, is hand generated, corresponding to the solution 

computed using our method. The average Compression Ratio over all the rows in 

the table is over 2.6. This shows that our method can easily find succinct 
descriptions for different kinds of target sets. Using additional attributes for the 

regions might allow for more succinct descriptions.  

Table 1: Description for the set of states with high activity levels. The abbreviations 
are used for state names [20].  
 

S.No. 
 

Week Descriptions of 
states with high ILI 
activity in the week 

No. of 
clauses  

Target set T |T| Compression 
Ratio 

1 2017-01-21 KS, NY, WA, and 
states with high 

activity two weeks 
back excluding OR 

and UT 

6 AL, GA, KS, KY, 
MO, NJ, NY, OK, 

SC, WA 

10 1.67 

2 2017-02-18 Ak, IL, MD, MN, states 
with high activity a 

week ago, states with 
low activity two 

weeks ago, and states 
with minimal activity 

three weeks ago 
excluding WY 

7 Al, AK, AR, CT, 
GA, IL, IN, KS, 

KY, LA, MD, MI, 
MN, MS, MO, NJ, 
NM, NY, NC, OK, 

PA, RI, SC, SD, 
TN, TX, VA 

27 3.86 

3 2017-03-25 States with high 
activity for last two 

weeks, excluding LA, 
MS and TX 

4 AI, AR, GA, KS, 
KY, NC, OK, SC, 

TN, VA 

10 2.5 

4 2017-04-08 KY, SC 2 KY, SC 2 1 
5 2015-01-03 CA, NV, NY, and 

states with high or 
moderate activity 
levels a week ago 

excluding FL and GA 

7 Al, AR, CA, CO, 
HI, ID, IL, IN, Ks, 
KY, LA, MD, MN, 

MS, MO, NV, 
NM, NY, NC, OH, 
OK, PA, SC, TN, 
TX, UT, VA, WV, 

WI 

29 4.14 

We now qualitatively evaluate the descriptions shown in Table 1 and examine the 
insights about epidemic outbreaks this gives. Some of the rows involve large target 
sets, e.g., rows 2 and 5 correspond to 27 and 29 states, respectively. The CDC 



descriptions for these weeks would be very long lists (as in Column 5), which are 
unlikely to give useful insights or identify any patterns. The description in row 5 
(week 2015-01-03) is succinct and gives the following insights: Almost all the states 
with high or moderate activity level in the previous week are high in the current 
week. Three new states that were not experiencing high/moderate activity are now 
at the high activity level. Florida and Georgia have experienced a sharp decline in 
activity levels within a week. 

We also note that some of the descriptions may not be insightful. For instance, the 
one for the week of 2017-04-08 (row 4) is simply a list. It is possible that there were 
no common characteristics of these two states, so that the most succinct description 
is just a list. The description for the week of 2017-02-18 (row 2) is quite 
complicated: it combines three sets of states with different activity levels in 
different times in the past. Figure 1 shows that a set of 10 states with high ILI for 
week 2017-01-21 is represented by our algorithm using 6 sets/clauses. The 
Compression ratio achieved here is 1.67 as we only use 6 clauses instead of listing 
10 state names. However, automated generation of such descriptions will allow a 
human expert to filter and select appropriate descriptions, instead of creating them 
from scratch.  

Figure 1: The set representation of the description for week 2017-01-21 (row 1). 
Each circle is a set and the states in the set are listed with their respective 
abbreviations. The states in the blue region correspond to the target set T. OR and 
UT are the singleton subsets (in dark blue) with high ILI activity two weeks ago but 
not in the current week. 

 
 
The Compression Ratio increases as we increase the relaxation factor γ. Figure 2 
shows that a set of 29 states with high ILI for week 2015-01-03 can be represented 



using only 3 sets/clauses. Although, 8 out of the 29 states are omitted from the 
description (shown in light blue region), as relaxation parameter is set to 0.3.  

Table 2: Impact of varying relaxation factor γ on the description and compression 
ratio. Rows 1.1-1.3 correspond to row 1 in Table 1, and rows 5.1-5.3 correspond to 
row 5 in Table 1. 

S.No. 𝛄 Description # Clauses Compression 
Ratio 

1.1 0.1 KS, WA, and states with high activity 
two weeks ago, excluding OR and UT 

5 2 

1.2 0.2 NY and states with high activity two 
weeks back, excluding OR and UT 

4 2.5 

1.3 0.3 States with high activity two weeks 
back excluding OR and UT 

3 3.33 

5.1 0.1 NY, and states with high or moderate 
activity levels a week ago excluding FL 
and GA 

5 5.8 

5.2 0.2 States with high or moderate activity 
levels a week ago excluding FL and GA 

4 7.25 

5.3 0.3 States with high activity level a week 
ago excluding FL and GA 

3 9.67 

 
Figure 2: The set representation of description of set of states with high ILI activity 
on 2015-01-03 (row 8). The blue set corresponds to the states with high activity a 
week ago. The dark blue colored singletons FL and GA are subsets of the blue set, 
but do not have high activity in the current week. The faded blue colored set 
consists of the states omitted from the description due to relaxation.  
 
 

 



Ranking Set Descriptions 

Table 4: “Interestingness” scores. 

S.No. Week  𝜸, 𝜶, 𝜷  Target set/ Pattern  Description  Score  

1 2018-01-27 (0, 2, 2) 

States with high activity this 
week, low activity two weeks 

ago, and moderate three 
weeks ago HI, MD, NC, OH 14 

States with moderate activity 
a week ago, minimal activity 

two weeks ago, and low three 
weeks ago  ND 13 

States with low activity two 
weeks ago, moderate three 

weeks ago, and minimal four 
weeks ago  MD, NC, OH 7 

2 2017-02-25 (0.3, 2, 4) 

States with high activity one 
week ago, low activity two 
weeks ago, and moderate 

three weeks ago  IA 14 

States that had moderate 
activity levels one week ago, 
minimal activity levels three 

weeks ago and minimal 
activity levels four weeks ago MA, OH, WI 8 

 
We find that the top scoring narratives generally are trends. Some examples of trend 
type of descriptions found by our method are the following: Gradual increase in the 

activity levels over consecutive weeks: The states AL, GA, MS, and TN had high activity 
in the week of 2016-03-12, moderate the previous week, and minimal two weeks 
ago. Stable high activity for consecutive weeks: In the week ending 2018-01-27, the 
states NJ, NM, VA, WA, WY, and the states with high activity four weeks earlier, 
excluding NE and TN, had high activity levels for three consecutive weeks. Gradual 

decrease in ILI activity over consecutive weeks: For the week of 2014-02-01, the 
activity levels in NC decreased from high to moderate to low in three consecutive 
weeks. 
 

Examples of surprise events identified by our methods are as follows: The activity 
level in NC, NM, SD, and WY jumped from low to high within a week, for the week 
ending 2017-02-04. The activity level in NH and TN changed from high to low within 
a week, for the week ending 2013-02-02. 
 

Comparison with baselines 

MinApproxDesc (see Figure 3) clearly provides summaries of smaller cost compared 

to that of DBS for the weeks 2017-01-21, 2017-02-18, and 2017-03-25. For the 

remaining weeks, it provides summaries of same cost as that of DBS.  



Figure 3:  Solution comparison:  MinApproxDesc vs. DBS.  

 

 
 

Discussion 
There is a lot of work on finding spatio-temporal patterns in different datasets. 
These are typically unsupervised machine learning methods, and we refer the 
readers to [25, 26] for surveys on different algorithms and their applications to 
various datasets. As is the case with other unsupervised methods, the specific 
technique depends on the application. The approach of finding patterns based on 
compression and small description have been found to be useful in many settings, 
e.g., [27] and Xiang et al. [11]. As we show in our results, we find that our description 
length based approach gives useful insights into spatio-temporal patterns in 
incidence of ILI, especially when negative clauses are allowed. However, no prior 
methods handle negative clauses, to the best of our knowledge.  In addition to 
negative clauses, we also find that the relaxed versions can also significantly reduce 
the complexity of descriptions in many cases.  
 
Our ranking method also provides a systematic approach to identify trends and 
surprises in the spread of ILI. However, the descriptions of high score are not always 
intuitive or interesting, which is often the case with unsupervised machine learning 
methods. Instead, our ranking based approach (or other variations of it) could help 
provide new insights to a domain expert, who might be able to find interesting 
spatio-temporal patterns more easily. Thus, such an approach could be a first step in 
processing epidemic incidence data. We believe that including more characteristics 
for the data (i.e., more columns in the data matrix 𝐷) can help find more succinct 
descriptions. Further, the integer programming based approach is quite powerful, 
and more constraints can be easily added to generate descriptions with specific 
kinds of properties. Though the descriptions reported here were generated by hand, 
these are all very well structured, and could conceivably be generated using natural 
language processing techniques easily. 



We compare the performance of our method with two other pattern detection 
methods in the literature as baselines, though, as mentioned earlier, they do not 
consider negative clauses. The first method, Apriori [9] is a very popular approach 
for association rule mining and pattern detection in a database containing 
transactions. Each transaction is seen as a set of items called itemset. The Apriori 
algorithm finds the frequent item sets in the database, the item sets that appear 
frequently among the transactions of the database. We observe that the rules 
generated by Apriori are trivial in nature and are not very informative.  

The work of Xiang et al. [11] (DBS) can be considered as a special case of MinDesc, 

where only positive clauses are allowed. Xiang et al. give a logarithmic 

approximation for the DBS problem for such instances. We implement an Integer 
Linear Program to solve this problem exactly. By comparing the solutions provided 

by MinApproxDesc with that of DBS, we demonstrate the benefit of allowing 

differences in generating compact descriptions. This analysis shows that these two 

baselines do not give very useful insights for the type of dataset considered here. 

Our methodology can be easily extended to other diseases and applications 
involving spatio-temporal data. The method can handle very general kinds of 
features and clauses formed by them. The ranking method has to be designed based 
on the specific domain. 

Limitations 

The feature values are real numbers, e.g., the similarity with a past season can be a 

correlation metric, not binary. One way to handle this issue would be to map the 

non-binary values to binary using discretization of the weights. Since we limited our 

focus to only meaningful features, our current approach explores target sets with 
temporal properties over small time intervals. In case of an increase in number of 

features by a few orders of magnitude than we considered, the ILP may not be able 

to scale well. One way to address this problem is to design scalable heuristics that 

give some theoretical/ experimental guarantees. 

Conclusion  

Automated generation of interesting spatio-temporal patterns and trends is an 

important problem, and can be very useful to public health experts, as well as the 

general public. Our approach, based on techniques from pattern mining, provides a 

short-list of patterns in ILI data from the CDC. We find that sets with high compression 

ratio tend have common characteristics, which are often interesting. This is, however, 

an unsupervised machine learning method, and needs to be verified manually. Our 

ranking method is one way to select interesting patterns in an automated manner. The 

techniques developed in this paper could potentially be applied for other diseases, and 

other public health domains.  
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